The Delayed k-Server Problem

Wolfgang W. Bein', Kazuo Iwama?, Lawrence L. Larmore!, and John Noga3

1 School of Computer Science, University of Nevada
Las Vegas, Nevada 89154, USA. **
bein@cs.unlv.edu larmore@cs.unlv.edu
2 School of Informatics, Kyoto University
Kyoto 606-8501, Japan.
iwama@kuis.kyoto-u.ac. jp
3 Department of Computer Science, California State University Northridge

Northridge, CA 91330, USA

jnoga@csun.edu

Abstract. We introduce a new version of the server problem: the delayed
server problem. In this problem, once a server moves to serve a request,
it must wait for one round to move again, but could serve a repeated
request to the same point. We show that the delayed k-server problem
is equivalent to the (k — 1)-server problem in the uniform case, but not
in general.

Keywords: Design and analysis of algorithms; approximation and ran-
domized algorithms.

1 Introduction

The k-server problem is defined as follows: We are given £ > 2 mobile servers
that reside in a metric space M. A sequence of requests is issued, where each
request is specified by a point r € M. To service this request, one of the servers
must be moved to r, at a cost equal to the distance moved. The goal is to
minimize the total cost over all requests. A is said to be online if it must decide
which server, or servers, to move without the knowledge of future requests.

We say that an online algorithm A4 for any online problem is C'-competitive
if the cost incurred by A for any input sequence is at most C' times the optimal
(offline) cost for that same input sequence, plus possibly an additive constant
independent of the input. The competitive ratio of A is the smallest C' for which
A is C-competitive. The competitiveness of any online problem is then defined
to be the smallest competitive ratio of any online algorithm for that problem.

The competitive ratio is frequently used to study the performance of online
algorithms for the k-server problem, as well as other optimization problems. We
refer the reader to the book of Borodin and El-Yaniv [2] for a comprehensive
discussion of competitive analysis.

** Research of these authors supported by NSF grant CCR-0312093.

The k-server problem is originally given by Manasse, McGeoch and Sleator
[11], who prove that no online algorithm for the k server problem in a metric
space M has competitive ratio smaller than k, if M has at least k + 1 points.
They also present an algorithm for the 2-server problem which is 2-competitive,
and thus optimal, for any metric space. They furthermore state the k-server
conjecture, namely that for each k, there exists an online algorithm for the &
server problem which is k-competitive in any metric space. For k£ > 2, this
conjecture has been settled only in a number of special cases, including trees and
spaces with at most k42 points [4, 5, 10]. Bein et al. [1] have shown that the work
function algorithm for the 3-server problem is 3-competitive in the Manhattan
plane, while Koutsoupias and Papadimitriou have shown that the work function
algorithm for the k-server problem is (2k — 1)-competitive in arbitrary metric
spaces [8,9].

We study here a modified problem, the delayed k-server problem. Informally,
in the delayed server problem, once a server serves a request, it must wait for
one round. This problem is motivated by applications where there are latencies
to be considered or service periods to be scheduled.

More precisely, we consider the following two versions of the problem. Let

rl.r?2,..., be a given request sequence.

(a): If a server serves the request at time ¢, it must stay at that request point
until time ¢ + 2. However, if r'*! = r!, the server may serve the request at
time ¢ + 1.

(b): If a server is used to serve the request at time ¢, it cannot be used to serve
the request at time ¢ + 1.

In practice, the difference between these two versions is that, in Version (b),
it may be necessary to have two servers at the same point, while in Version (a)
that is never necessary.

We refer to the server which served the last request as frozen. We will assume
an initial configuration of servers, one of which will be initially designated to be
frozen.

Lemma 1.1. Let Cyp i and Cy ari to be the competitiveness of the delayed
k-server problem in a metric space M, for Versions (a) and (b), respectively.
Then Ca,M,k < Cb,M,k~

Proof. Let A be a C-competitive online algorithm for Version (b). We can then
construct a C-competitive online algorithm A’ for Version (a), as follows. For
any request sequence g, let ¢’ be the request sequence obtained from o by delet-
ing consecutive duplicate requests. Then A’ services ¢ by emulating A on the
requests of ¢, except that A’ services any consecutive duplicate request at zero
cost and then forgets that it happened.

Let OPT be the optimal offline algorithm for Version (b), and let OPT’ be the
optimal offline algorithm for Version (a). Note that the optimal cost to service
a request sequence with no consecutive duplicates is the same for both versions.

We know that there exists a constant K such that costg < C' - costopr + K for
every request sequence. Thus, for every request sequence o,

costar(0) — C - costopr (0) =
COSt_A/(Q/) -C- COStOPT/(Q/)
costa(0') — C - costopr(0') < K

We remark that, trivially, the delayed k-server problem is only defined for
k > 2 and that it is 1-competitive if £ = 2 in all situations.

In the cache problem, we consider a two-level memory system, consisting
of fast memory (the cache), which can hold ¥ memory units (commonly called
pages) and an area of slow memory capable of holding a much larger number of
pages. For fixed k, we refer to the cache problem as the k-cache problem if the
cache size is k.

In the most basic model, if a page in slow memory is needed in fast memory
this is called a page request. Such a request causes a hit if the page is already
in the cache at the time of the request. But in the case of a fault, i.e. when the
page is not in the cache, the requested page must be brought into the cache — we
assume unit cost for such a move — while a page in the cache must be evicted to
make room for the new page. An online paging algorithm must make decisions
about such evictions as the request sequence is presented to the algorithm. The
k-cache problem is equivalent to the k-server problem in a uniform metric space
and thus the definition of the delayed server problem implies the following two
versions of the delayed k-cache problem:

(a): If a page in the cache is read at time ¢, it cannot be ejected at time ¢ + 1.

(b): If a page in the cache is read at time ¢, it can neither be read nor ejected
at time ¢ + 1. (That implies that duplication of pages in the cache must be
allowed.)

We remark that Version (a) of the delayed k-cache problem is equivalent to
Version (a) of the delayed k-server problem in uniform spaces, while Version
(b) of the delayed k-cache problem is equivalent to Version (b) of the delayed
k-server problem in uniform spaces.

We refer to the cache location which was read in the previous step as frozen.
We will assume an initial cache configuration, and one of the cache locations will
be initially frozen.

Henceforth, we shall consider only Version (a) of the delayed k-server prob-
lem. We claim that it makes more sense for applications, such as the cache
problem described above, but we have included a short section (Section 5, at
the end of the paper) which discusses Version (b). In the Section 2 we show
that the classic online algorithm LRU can be adapted to the delayed k-cache
problem, and is (k — 1)-competitive. More generally, we show that the (random-
ized or deterministic) delayed k-cache problem is equivalent to the (randomized
or deterministic) (k — 1)-cache problem. This implies that the (randomized or
deterministic) delayed k-server problem in uniform spaces is equivalent to the

(randomized or deterministic) (k — 1)-server problem in uniform spaces. This re-
sult might prompt the conjecture that the delayed k-server problem is equivalent
to the (k — 1)-server problem in all metric spaces. This is however not the case,
as we show in Section 3. In Section 4, we give a k-competitive algorithm for the
delayed k-server problem in a tree. Finally, we discuss future work in Section 6.

2 The Delayed k-Cache Problem

2.1 LRU is (k — 1)-Competitive

It is well-known that least recently used (LRU) a deterministic algorithm for
the k-cache problem (and hence for the k-server problem in a uniform space)
is k-competitive. At each fault, the least recently used page is ejected. (In the
terminology of the server problem this means that at each step the least recently
used server is moved to serve the request, if the request is at a point which does
not already have a server.)

Theorem 2.1. The algorithm LRU is (k—1)-competitive for the delayed k-cache
problem.

Proof. Let a request sequence 9 = r'...7"™ be given. Let OPT be an optimal
offline algorithm. The most recently used page is the frozen page. We insist that
LRU eject all other initial pages before it ejects the initially frozen page.

We partition o into phases ¢°,0',... We will show that OPT faults once
during the phase o! for each ¢t > 0, and that LRU faults at most k — 1 times
during any phase. The result follows.

Define ¢° to be the (possibly empty) sequence of requests that precedes the
first fault of OPT. For t > 0, let o consists of all requests starting with the ¢**
fault of OPT, up to but not including the (¢ 4+ 1)%* fault of OPT.

Clearly, OPT faults at most once during each phase. We need to prove that
LRU faults at most k¥ — 1 times during a phase.

Initially, mark all pages in the cache. If a page p is requested, and if OPT
does not fault on that request, mark p, unless it is already marked. If OPT faults
on that that request, unmark all pages except the frozen page, and then mark p.

We observe that OPT never ejects a marked page, because the only time
OPT faults is when a phase begins, and at that time all pages are unmarked
except for the frozen page, which cannot be ejected. Thus, at any given step, all
marked pages are in OPT’s cache. LRU also never ejects a marked page. If there
are unmarked pages in the cache, each of the marked pages has been used more
recently than any of the unmarked pages, and if all of LRU’s cache pages are
marked and LRU faults, then OPT must have those same pages in the cache, so
OPT must fault also, ending the phase, and unmarking the least recently used
page before it is ejected. Thus, at any given step, all marked pages are in LRU’s
cache.

During the phase o, for ¢t > 0, each time LRU faults, the number of marks
increases by 1. Since ¢! begins with one page marked, LRU faults at most k — 1
times during that phase.

2.2 Equivalence of the Delayed (k — 1)-Cache Problem and the
k-Cache Problem

We now generalize Theorem 2.1 by showing that the delayed k-cache problem
and the (k—1)-cache problem are equivalent in a very strong sense, and thus have
the same competitiveness. This equivalence is valid for both the deterministic
and the randomized cases. This result implies that the delayed k-server prob-
lem for uniform spaces is equivalent to the (k — 1)-server problem for uniform
spaces. In particular, given any algorithm for the k-cache problem we construct
an algorithm for the (k — 1)-cache problem, and vice versa.

To formally construct the equivalence, it helps to assign standard names to
all pages. Let {p,,pa, ...} be the set of pages for the (k — 1)-cache problem, and
let @ = {qo, ¢, ¢, .-} be the set of pages for the delayed k-cache problem. To
simplify our construction below, it helps if both caches are the same size. Thus,
we introduce a fictitious page p, for the (k — 1)-cache problem, which is never
requested, and which is always in a fictitious cache location which can never be
used. Write P = {p,, p1, P2, - ..}. We will designate ¢, to be the initially frozen
page.

Without loss of generality, a request sequence for the delayed k-cache problem
has no duplicate consecutive request, since such a request can be serviced at
zero cost by doing nothing. Let R be the set of all request sequences for the
(k—1)-cache problem, and S the set of all request sequences with no consecutive
duplicate requests for the delayed k-cache problem. We will first construct a 1-1
onto mapping f : § — R. Let s° = p,. Given any ¢ = s's*>...s" € S, we
inductively construct a sequence of one-to-one and onto functions f!: Q — P,
for 0 <t < n, as follows:

1. f°(gq;) = p; for all ¢ > 0.
po if g = s'

2. Ift > 0, then fi(q;) = ¢ fi=1(s?) if ¢ = s'7!
ft71(q;) otherwise

Now, define f(c) = o = r'r?...r", where r' = f!=1(s*). Note that ¢ can be
defined online, i.e., 7t is determined by s*...s%.

If A is an algorithm for the (k—1)-cache problem, we construct an algorithm
B = F(A) for the delayed k-cache problem, as follows. Given a request sequence
¢ € S for the delayed k-cache problem, let o = f(s) and f!: S — R be defined
as above. For each step t, let 7t = f!=1(s). If A ejects p; at step t with request
rt, then B ejects f'=1(p;) at step t with request s*. The following two lemmas

can be verified inductively:

Lemma 2.2. Let A be an algorithm for the (k — 1)-cache problem, and let B =
F(A). Then

1. for any i > 0 and any t > 0, q; is in B’s cache after t steps if and only if
either f'(q;) = po or ft(q;) is in A’s cache after t steps,
2. for any t > 0, costiz(s) = cost'y (o).

Fig. 1. Equivalence of 2-Cache and Delayed 3-Cache

Lemma 2.3. If B is an algorithm for the delayed k-cache problem, then there
is a unique algorithm A for the (k — 1)-cache problem such that F(A) = B.

The following theorem reduces the delayed cache problem to the cache prob-
lem.

Theorem 2.4. Let k > 2. There is a C-competitive online algorithm, deter-
ministic or randomized, for the (k — 1)-cache problem, if and only if there is
a C-competitive online algorithm, deterministic or randomized, respectively, for
the delayed k-cache problem.

Proof. We will only give the proof for the deterministic case, and in only one
direction, as the converse has a similar proof, and the randomized case has the
same proof where cost is replaced by expected value of cost.

Suppose that A is a C-competitive online algorithm for the (k — 1)-cache
problem. Let OPT be an optimal offline algorithm for the (k — 1)-cache problem,
and let OPT’ be an optimal offline algorithm for the delayed k-cache problem.
Let B = F(A). Note that B is online. By Lemma 2.3, there exists an offline
algorithm D for the (k — 1)-cache problem such that F(D) = OPT'.

We know there is some constant K such that cost4(g) < C - costopr(0) + K
for any p € R. If ¢ € S, let o = f(<). Then, by Lemma 2.2,

costp(s) — C -+ costopr (s) =
cost4(0) — C - costp(p)

<
cost4(0) — C - costopr(0) <

K

2.3 An Example

Figure 1 illustrates the equivalence of the delayed 3-cache problem and the
2-cache problem in an example. Suppose that ¢ = ¢5¢.¢s¢:1G,- Then ¢ = f(¢) =

PsPaPop1Ps. The vertical arrows show the one-to-one correspondence f! for each
0<t<h.

Let A be LRU for the 2-cache problem, and OPT an optimal offline al-
gorithm for the 2-cache problem. Then the contents of A’s cache and F(A)’s
cache, after each number of steps, are enclosed in solid lines. The contents
of OPT’s cache and F(OPT)’s cache are enclosed in dotted lines. Note that
costa(0) = costp(ay(s) =4 and costopr(0) = costp(opr)(s) = 2.

3 Lower Bounds for the Delayed k-Server Problem

In this section we show lower bounds for the delayed k-server problem. Our first
theorem shows that a lower bound of (k — 1) holds for arbitrary metric spaces
of k 4+ 1 or more points.

Theorem 3.1. In any metric space M of at least k+ 1 points, the competitive-
ness of the delayed k-server problem is at least k — 1.

Proof. Pick a set X = {x,,...,2x+1} C M. Initially, all servers are in X, and,
without loss of generality, there is a server at x41. We then consider the follow-
ing adversary:

— For each odd ¢, r* = 23 1.
— For each even t, 7 is the point in X where the algorithm does not have a
server.

Note that the server which was initially at zx4; will serve all odd requests,
but will never move, yielding a cost of zero for all requests at odd-numbered
steps, for both the online algorithm and the optimal algorithm. Thus, we can
ignore all requests for odd ¢, and consider the sequence r2,74,..., 7% ... in
the metric space M* = M — xy41, which is the sequence created by the cruel
adversary for the (k — 1)-server problem in M*. The remainder of the proof is
the same as the classic proof that the cruel adversary gives a lower bound of
k —1 for the (k — 1)-server problem in any space with at least k points. (See, for

example, [11].)

From this, the results of Section 2, and from the well-known k-server con-
jecture [11], we might be tempted to conjecture that the competitiveness of the
delayed k-server problem is k — 1. That conjecture can be immediately shown to
be false, however. In fact, we give a proof of a lower bound of 3 for the delayed
3-server problem.

Let M be the metric space with four points, {a,b,c,d}, where ab = be =
cd = ad =1 and ac = bd = 2. We call this metric space the square.

Theorem 3.2. The competitiveness of the delayed 3-server problem in the square
s at least 3.

7
\
v,

N ’
t @) v

< ~ 1 1~
+ <0)

d c d c d c d c d [d c

Fig. 2. One Phase Costs 3 for the Square, Optimal Cost is 1

Proof. Let A be an online algorithm for the delayed 3-server problem in the
square. We show that the adversary can construct a request sequence consisting
of phases, where in each phase, A is forced to pay 3, while the optimal offline
algorithm pays 1.

At the beginning and end of each phase, the servers are at three points, and
the middle point is frozen. Without loss of generality, the servers are at {a, b, c}
and the server at b is frozen.

The adversary then constructs the phase as follows:

Al. The adversary requests d.

B1. Without loss of generality, A serves from c. A’s servers are now at {a, b, d}.

A2. The adversary requests c(dbc)™ for sufficiently large N.

B2. The algorithm responds. No possible response costs less than 2. The phase
ends when the algorithm’s servers are at {b, ¢, d}, if ever.

We now analyze the cost. The optimal cost to serve the phase is 1, since
the optimal offline algorithm moves a server from a to d at Al. The optimal
algorithm’s servers will now be at {b, ¢,d}, and move A2 is free.

If A ever moves its servers to {b, ¢, d}, it pays 1 for B1, and at least 2 for B2;
the configuration is symmetric to the initial configuration, and the next phase
begins. If A never moves its servers to {b, ¢, d}, the phase never ends, but A pays
unbounded cost.

Figure 2 shows one phase where A pays 3. The frozen server is enclosed by
a dotted circle at each step.

We note that M cannot be embedded in a Euclidean space. However, if one
models M with an ordinary square in the Euclidean plane, where the diagonal
distance is v/2 instead of 2, the above request sequence gives a lower bound of
1+ /2 for the competitiveness of the delayed 3-server problem in the Euclidean
plane.

4 k-Competitiveness for Trees

In this section we prove that the deterministic competitiveness of the delayed
k-server problem is at most k for all continuous trees. The proof is similar to
that for the regular k-server problem given in [5].

S ros S S ros s
(8) Beginning of Step (b) After first Phase
S S,
S4 % SA SZ
S rs S s
(c) After second Phase (d) End of Step

Fig. 3. One Step of Tree Algorithm Showing Three Phases

We define a continuous tree to be a metric space where there is exactly
one continuous simple path between any two points. For example, the line is a
continuous tree. We note that a continuous tree is called simply a ¢ree in [5].

Let T be a continuous tree. We define an online algorithm, A, which we call
the tree algorithm, for the delayed k-server problem in T'. A is very similar to
the algorithm given in [5].

Suppose that sq,...,s, are the positions of A’s servers in T', and r is the
request point. Without loss of generality, sy is the frozen page.

In response to a request, A moves servers continuously toward r according
to a protocol given below, stopping when one of them reaches . We call this
movement a service step. The movement consists of phases, where during each
phase, the number of servers moving remains constant, and all of the moving
servers move toward r. At the end of each phase, one or more servers stop. Once
a server stops moving, it does not start up again during that service step.

We say that a server s; is blocked by a server s; if s; is unfrozen and s; lies on
the simple path from s; to r. (In the special case that s; and s; are at the same
point, we say that s; blocks s; if ¢ > j, but not if ¢ < j.) During each phase, all
unblocked servers move toward r at the same speed. If one of the moving servers
becomes blocked, the phase ends.

Figure 3 shows an example of a step of the tree algorithm. In the figure, k = 5,
and initially, in (a), ss is frozen, and none of the other servers are blocked. During
the first phase, s, s, s5, and s, move toward r. When s, blocks s;, as shown in
(b), the second phase begins, during which s;, s,, and s, move toward r. When
s, and s, reach the same point, s, blocks s,, as shown in (c), starting the third
phase, during which s, and s, move towards r. Finally, s, reaches r and services
the request, ending the step, as shown in (d).

Theorem 4.1. The tree algorithm is k-competitive for the delayed k-server prob-
lem in a tree T'.

Proof. Let OPT be an optimal offline algorithm. We need to prove that, for some
constant K,

costa(0) < k- costopr(0) + K (1)

Just as in [5], we use the Coppersmith-Doyle-Raghavan-Snir potential [7] to
prove k-competitiveness. If X = {z,,... 2} is any multiset of size k of points in
T, define ¥X =37, ;o iz Y = {y:,... yx} is another multiset of size £,
define || X, Y| to be the minimum matching distance between X and Y, i.e., the
smallest possible value of Zle TiYx(i), over all permutations 7 of {1,...,k}. If
S and O are multisets of size k, we define

B(S,0) = XS+ K|S, O]

Let SY be the initial configuration of the servers, a multiset of points in T of
size k. Let r° be the initial position of the initially frozen server. If o = r'r? ... 7"
is a request sequence, let S* be the configuration of A’s servers after servicing
r°...rt, and let O! be the multiset of positions of OPT’s servers after ¢ steps,
and let @' = &(S*, 0), the potential after ¢ steps. Let cost'y be the cost of A
during Step ¢, and let cost! . be the cost of OPT during Step ¢. Then cost4(0) =
E?:l costf4, and costopr(0) = E?:l costt ..

Let S%* be the multiset of positions of A’s servers after 7 phases of Step ¢; for
example, S0 = §*~! and 5™ = S*. where m; is the number of phases of Step
t. Let p;; be the number of moving servers during the ‘" phase of Step ¢. and
let ¢ ; be the distance that each of those servers moves. We verify the following
sequence of equalities and inequalities.

HSt’i_l, St’iH =pily; foralltandalll<i<my (2)

XStt - 8L < (2k — (14 k)pri)lei (3)
foralltand all 1 <i < my

[|S5%, 0| = [|S"* 1, O'|| < (pri—2)li; foralltand all 1 <i<m,; (4

|51, 85| + &(5*,0") < B(S** 1, 0") forall t and all 1 <i < my (5

OS5 0Y <k-||01 0|+ o(S'H, 0 forallt (6

(

—_ — —

|51, S| + @(S*, 0") < B(5*1,0%) forall t 7
costly + ' =
||St—1’StH +¢(St,0t) <k- HOt_l,OtH _i_gf)(srt—l’Ot—l) (8)

=k-cost . + &1 forallt

(2) follows from the fact that p;; servers move a distance of ¢, ; each.

During Phase i of Step ¢, each stationary server s; gets farther away from
at most one server, namely the moving server, if any, that blocks it; and s; gets
closer to each other moving server. Furthermore, any two moving servers get
closer to each other. (3) follows from routine calculation.

During Phase 4 of Step ¢, in the minimum matching of Of with S, as S varies
from S%*~1 to S, the server of OPT which served 7*~! can be matched with

sk, and the server of OPT which served 7' can be matched with one moving

server, say s;. Since s; gets closer to its partner during the phase, and since,
in the worst case, the other p, ; — 1 moving servers get farther away from their
partners, (4) holds. Then, (5) follows from Inequalities (2), (3) and (4).

By the triangle inequality for minimum matching,

k- HOtil,OtH +¢(St71,ot71) _@(Stfljot) _
k07RO [+ k- SO [= k- [T O' 2 0

which verifies (6). Then (7) follows from (5) for each phase, while (8) follows
from (6) and (7). Note that " > 0; summing (8) over all ¢ and letting K = ¢°,
we obtain (1).

We give the following lemma without proof:
Lemma 4.2. If My C Ms, then Cy n, k < Ca ok and Cyary 1 < Ch iy k-
From this we have:

Theorem 4.3. If a metric space M can be embedded into a continuous tree T,
then the delayed k-server problem is k-competitive in M.

5 Version (b)

We remark that Theorem 2.1 holds if we use Version (b) of the delayed k-cache
problem. In this case, we must be sure to define LRU properly; LRU keeps track
of when each cache location was used, and in case of a fault, ejects the page in
the cache that was least recently read. The proof of (k — 1)-competitiveness is
very similar to that for Version (a). In the proof, if a page is read, the cache
location of that page is marked. If there are two copies of the page in the cache,
it is important not to mark both of them unless forced to do so. More precisely,
if a page p is requested, and there is one copy of p in the cache, that copy is
read and its location marked, unless it is frozen, in which case another copy is
moved into the cache and its location marked. But if p is requested and there are
already two copies in the cache and their locations are not both marked, only
the location of the copy that was most recently moved into the cache is marked.

We remark that, using essentially the same proof as that of Theorem 4.3, we
can show that the tree algorithm is k-competitive for Version (b).

6 Open Problems

We conjecture that there is a lower bound of k for the delayed k-server problem in
general spaces. In fact, it could well be that a lower bound of k could be provable
for tree metric spaces. We also conjecture that Co arx < Cy e < Cari for any
metric space M, where Cysk is the competitiveness of the k-server problem in
M.

Further work is necessary to give a competitive algorithm for the delayed
server problem in general spaces. We conjecture that a modification of the Work
Function Algorithm (see, for example, [3,6,9]) could yield such an algorithm.

7

Acknowledgement

Wolfgang Bein thanks Kazuo Iwama for the generous support he received while
he visited Kyoto University to work on this project during December 2004 and
January 2005.

References

10.

11.

. Wolfgang Bein, Marek Chrobak, and Lawrence L. Larmore. The 3-server problem

in the plane. Theoretical Computer Science, 287(1):387-391, 2002.

. Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis.

Cambridge University Press, 1998.

William R. Burley. Traversing layered graphs using the work function algorithm.
Journal of Algorithms, 20:479-511, 1996.

Marek Chrobak, Howard Karloff, Tom H. Payne, and Sundar Vishwanathan. New
results on server problems. SIAM Journal on Discrete Mathematics, 4:172—181,
1991.

Marek Chrobak and Lawrence L. Larmore. An optimal online algorithm for k
servers on trees. SIAM Journal on Computing, 20:144-148, 1991.

Marek Chrobak and Lawrence L. Larmore. Metrical task systems, the server prob-
lem, and the work function algorithm. In Amos Fiat and Gerhard J. Woeginger,
editors, Online Algorithms: The State of the Art, pages 74-94. Springer, 1998.
Don Coppersmith, Peter G. Doyle, Prabhakar Raghavan, and Marc Snir. Random
walks on weighted graphs and applications to online algorithms. In Proc. 22nd
Symp. Theory of Computing (STOC), pages 369-378. ACM, 1990.

Elias Koutsoupias and Christos Papadimitriou. On the k-server conjecture. In
Proc. 26th Symp. Theory of Computing (STOC), pages 507-511. ACM, 1994.

. Elias Koutsoupias and Christos Papadimitriou. On the k-server conjecture. Journal

of the ACM, 42:971-983, 1995.

Elias Koutsoupias and Christos Papadimitriou. The 2-evader problem. Information
Processing Letters, 57:249-252, 1996.

Mark Manasse, Lyle A. McGeoch, and Daniel Sleator. Competitive algorithms for
server problems. Journal of Algorithms, 11:208-230, 1990.

