Host-based Anomaly Detection by Wrapping File System Accesses *

Shlomo Hershkop

Ryan Ferster

Linh H. Bui Ke Wang

Salvatore J. Stolfo
Columbia University, New York, NY 10027, USA
{shlomo,rlf92,1hb2001,kewang,sal } @cs.columbia.edu

Abstract

We describe a Host-based Intrusion Detection Sys-
tem that monitors file system calls to detect anoma-
lous accesses. The approach we describe is a fast,
automatic, and inexpensive monitoring system which
can augment current IDS’s without the overhead of
OS system call tracing and wrappers. We report
on a deployed system using the FiST file wrapper
technology and results of an anomaly detector, we
call FWRAP, implemented in our lab environment.
FWRAP employs the Probabilistic Anomaly Detec-
tion (PAD) algorithm previously reported on work
on Windows Registry Anomaly Detection, extended
here to operate on Unix platforms. The detection
system is not programmed, rather PAD is an unsu-
pervised machine learning algorithm that is used to
train a detector. The detector is first trained by op-
erating the host computer and a model specific to the
target machine is automatically computed by PAD.

1 Introduction

Some approaches to host-based anomaly detection
have focused on monitoring the operating system’s
(OS) processes during program execution and alert-
ing on anomalous sequences of system calls. For ex-
ample, OS wrappers monitor each system call or DLL
application and test a set of rules for ”consistent”
program execution [2, 8, 11]. This presumes that
a program’s legitimate system call execution can be

*This work has been supported in part by a grant from
DARPA, Contract No. F30602-00-1-0603.

specified correctly by a set of predefined rules. Alter-
natively, some have implemented machine learning
techniques that model sequences of "normal” execu-
tion traces and thus detect run time anomalies that
exhibit abnormal execution traces [5, 14].

Anomaly Detection is an important alternative de-
tection methodology that has the advantage of de-
fending against new threats not detectable by signa-
ture based systems. In general, anomaly detectors
build a (mathematical) description of normal activ-
ity, by training a model of a system under typical op-
eration, and compare the normal model at run time
to detect deviations of interest. Anomaly Detectors
may be used over any ”audit source” to both train
and test for deviations from the norm.

There are several important intuitive advantages
to auditing at the OS level. This approach may pro-
vide broad coverage and generality: for a given target
platform it may have wide applicability to detect a
variety of malicious applications that may run on that
platform.

However, there are several disadvantages to
anomaly detection at the OS monitoring level. Per-
formance (tracing and analyzing system calls) is not
cheap; there is a substantial overhead for running
these systems, even if ”lightweight”. Second, the
adaptability and extensibility of these systems ques-
tion their practicality as updates to a platform may
necessitate a complete retraining of the OS trace
models.

Furthermore, OS system call tracing and anomaly
detection may have another serious deficiency; they
may suffer from mimicry attack [16], since the target
platform is widely available for study by attackers.

We have taken an alternative view of host-based
anomaly detection. Anomalous process executions
(possibly those that are malicious) may not truly
damage a system unless and until the malicious ex-
ecution attempts to alter or damage the machine’s
permanent store. Thus, a malicious attack that al-
ters run-time memory is perhaps less important than
actions that attempt to damage permanent store of
the host in question. In this case, the two very im-
portant host based systems to defend and protect are
the Registry (in Window’s case) and the file system
(in both Window’s and Unix cases).

Previous work reported in Raid 2002 [1], describes
RAD, the Windows Registry Anomaly Detector. At
its core, RAD monitors each Windows registry [12]
query, and builds a model of normal registry use.
This baseline model is then used at run-time to detect
errant or abnormal registry accesses indicative of ma-
licious program executions, either purposeful changes
to that registry to harm a system, or to identify in-
formation about the target of the malicious exploit.
In either case, the Registry is an important central
source of information of interest to malicious program
execution.

In subsequent work, the RAD system was designed
to be ”self protecting”. The normal windows reg-
istry models computed by RAD are subject to attack
either by alteration or mimicry attack by malicious
code. Thus the RAD models are stored in the registry
itself. Hence, any malicious executable attempting to
attack the RAD sensor will necessarily require access
to the registry to launch its attack, which will very
likely be detected as an abnormal registry access by
the sensor.

In the case of Unix platforms there is no central
registry to monitor. In this case we focus our auditing
on the underlying file system. The file system is the
core permanent store of the host and any malicious
execution intended to damage a host will ultimately
set its sights upon the file system.

The File Wrapper Anomaly Detection System
(FWRAP) is a host-based anomaly detector that uti-
lizes file wrapper technology to monitor file system
accesses. It is the counterpart of RegBam (the reg-
istry ?wrapper”) developed for RAD for the registry.
The file wrappers implemented in FWRAP are based

upon work described in [17] and operate in much the
same fashion as the wrapper technology described in
[8, 2]. The wrappers are implemented to extract a
set of information about each file access including,
for example, date and time of access, host, UID, PID,
and filename, etc. Each such file access thus gener-
ates a record describing that access. Intuitively, these
records provide the same type of information associ-
ated with a Windows Registry access, and as such
can be modeled in the same fashion.

RAD introduced the Probabilistic Anomaly
Detection algorithm, which we refer to as PAD. The
PAD algorithm is quite general and we use it here to
model file system accesses. The PAD algorithm in-
spects historical feature values in its training data set,
and estimates the probability of occurrence of each
value using a Bayesian estimation technique. PAD
estimates a full conditional probability mass function
and thus estimates the relative probability of a fea-
ture value in comparison with other feature values
and the expected frequency of occurrence of each fea-
ture. In other words, we assume that normal events
will occur quite frequently, and abnormal events will
occur with some very low probability.

In this work, we apply PAD to analyze and model
file access data, merged with information about the
running processes that invoke such accesses, to train
an anomaly detector in much the same fashion as ac-
complished with RAD. In the same way RAD mod-
eled the actions of running programs vis-a-vis the
System Registry we are modeling running processes
vis-a-vis the underlying file system.

Here we report the details about the wrapper tech-
nology employed in FWRAP, the data and features
extracted during a file access, and the results of an
experiment to measure the accuracy of the PAD-
generated anomaly detector.

The rest of the paper is organized as follows. Sec-
tion 2 discusses the architecture of the FWRAP sys-
tem. We describe previous work and what we have
added to the FiST system. Section 3 discusses the
experimental setup while section 4 presents the re-
sults and discusses our findings. Section 5 describes
the open problems in anomaly detection research and
how this work can be extended, we then finish the pa-
per with some closing thoughts.

2 FWRAPS

Previous work by Zadok [17, 18, 20] proposed a
mountable file system for Unix and Windows which
would allow additional extensions to the underlying
operating system without having to modify kernel
level functionality. The FiST technology developed
in that work has been extended to provide a security
mechanism via file system auditing modules. We im-
plemented a FiST audit module that forms the basis
of the FWRAP anomaly detector.

The architecture of the FWRAP system is based
on the Adaptive Model Generation (AMG) [7] frame-
work. FWRAP is a system which includes lightweight
sensors and detectors on all computers that are au-
dited. The sensors are lightweight and transparent;
collecting data should be a background process, un-
known to users that shows little or no perceptible
decrease in performance of the monitored system.

In the AMG architecture [7] a central data storage
is used to collect all of the audit data from each of
the monitored systems where modeling is performed
as an offline process. AMG was designed to perform
experiments that correlate sensors and detectors over
different types of data from different sources in real
time. This is facilitated by a central store for all of
the collected data. A central (or local) analyzer and
detector would also be able to analyze audit data and
detect intrusions at run time for each of the moni-
tored systems attached to AMG. Additionally, once
an intrusion is detected, we would like to be able to
mitigate its effects on the target victim, while also
taking steps to prevent its propagation on other ma-
chines being monitored. The centralized approach of
AMG would facilitate this process.

FWRAP represents one of several different types
of sensors that one may deploy on a network of mon-
itored systems. AMG incorporates many different
types of sensors, such as network sensors, registry
sensors (for Windows machines), netstat sensors, and
process Sensors.

Figure 1 illustrates the architecture that we de-
veloped in our lab experiments reported in this re-
port. The figure illustrates the parts of the system
which run independently of each other. However it
is straightforward to run the proposed FWRAP sys-

tem, or any of the other host-based sensors, entirely
as a standalone real time application on a single host.

Alerts * 4 Records

Data Warehouse

_rea
S (' VNODELAYER)
‘*ﬁj&m

Underlying FS

.

PROCESSTABLE

KERNEL

Local Disk

Figure 1: The Architecture of FWRAP IDS

2.1 Requirements

Several requirements were specified for the design of
the FWRAP system. The file system sensor had to
be lightweight, easily portable to different systems,
and complete, in the sense that it is able to monitor
all file-system accesses without loss of information.
Perhaps the most important requirement is that the
system must be transparent to the user.

2.1.1 Lightweight vs Portability

There are two types of file systems we are concerned
with; native (kernel-level) and user-level. Requiring
a lightweight file system sensor that is also part of
the file system implies that it should be a native
file system. Native files systems, such as ext2 and
fat32, are relatively fast due to the fact that they are
kernel-level. However, building or modifying native
file systems usually requires recompiling parts of the
kernel, which may not be readily available for some
platforms.

User-level file systems, on the other hand, do not
need a kernel compile, but they do suffer from slower
speed, due mostly to context switches from kernel
to user levels. A third type of file system, kernel-
resident stackable file systems, the subject matter of
the research in [19], attempts to combine the speed
of native file systems with the ease of use of a user-
level file system. This was accomplished through the
Vnode Interface.

2.2 Vnode

A Vnode is a pointer to a file system entity and serves
as a file system ”wrapper”, providing an interface
to an underlying file system implementation. Calls
to the Vnode are not file system specific. Hence, a
process that uses a Vnode has no knowledge of the
underlying file system implementation, only an inter-
face to that file system. Additionally, it is possible to
”stack” Vnodes on top of each other. This concept
was first proposed by Rosenthal [13].

Each stacked Vnode thus accesses the Vnode be-
neath it as if it were accessing a single Vnode. This
leaves the user free from worry about the specifics
of the underlying file system and allows him to con-
centrate on the customizations on the file system
accesses provided by each Vnode implementation.
Since it is kernel-resident, the customized file system
will run only slightly slower than a native file system
and much faster than a user-level file-system [17].

2.3 FiST

FiST [18] is a high level language designed to aid the
development of kernel-resident stackable file systems.

Fistgen is an executable included with FiST that
generates C code from FiST code. The C code is then
compiled and inserted as a module. At this point, the
new file system is ready to be mounted. The advan-
tage of using a high level language like FiST is that a
user does not need to worry about the underlying de-
tails of the file system he is modifying; he only needs
to describe it in FiST. Additionally, FiST code is very
easily ported between different systems [18].

Finally, FiST can produce layering which allow fan-
in and fan-out of mount points. Fan-out is useful for

load balancing, as well as replicating mount points.
Fan-in is useful to directly access lower level mount
points, without going through the intermediary file
system [19]

In our work, we wrote FiST modules for audit-
ing file accesses for use by FWRAP. This was ac-
complished by modifying an existing wrapper imple-
mented in FiST called Snoopfs.

2.3.1 Snoopfs

Snoopfs is file system described by the FiST language
and included in the FiST package. Snoopfs checks if
any non-root user or file owner receives a ”permis-
sion denied” or "file not found” error. If so, it sends
a message to the kernel logger. In our implementa-
tion we removed all of the conditionals from Snoopfs
and forced it to send all file accesses to the the kernel
logger, which we redirect to a file similar to what is
described in [20]. We did this by modifying the FiST
file which describes the snoopfs file system, and then
translating the FiST file to snoopfs.c. Once compiled,
the kernel module snoopfs.o was loaded at runtime as
a Linux kernel module (using insmod) and the direc-
tories were mounted.

One ”feature” of stacking is that the underlying
mount point is generally directly accessible. This
feature could be thwarted by a malicious user or pro-
gram by simply directly accessing the underlying file-
system and avoiding the wrapper and file system log-
ging. We addressed this security concern by limit-
ing access to the underlying mount point by using
an ”overlay mount”. This mount does not allow di-
rect access [20] to the underlying file system. All
file-system accesses are thus forced to go through the
mount point, forcing the access logging.

2.4 Data Storage

Once all subsystem file accesses are logged in this
fashion, its a straightforward matter in our architec-
ture to provide the means of reading from the log,
formatting the data and sending it to AMG. A typi-
cal line of text sent to the kernel logger by the Snoopfs
file system is

Mar 9 19:03:14 zeno kernel:

snoopfs detected access
by uid 0, pid 1010, to file cat

This record was generated by having the root user,
access a file named ’cat’ on a machine named ’zeno’.
We modified a C program to format this data and
send it to AMG. The communication with AMG fol-
lows an XML style exemplified by the following:

<rec><Month str>Mar</Month><Day i>9</Day>
<Time str>19:03:14</Time>

<IP str>zeno</IP><UID i>0</UID>

<PID i>1010</PID><File str>cat</File></rec>

Records are sent to the central AMG from multiple
hosts. Once in the data warehouse, a PAD model of
normal behavior is computed for each host. Each
model may then be sent to each of the hosts, and all
new file accesses are compared to this model locally.
Alarms generated by each of the hosts are reported
back to AMG.

Over very short training periods, most of the fea-
tures collected by the FWRAP system such as time
of day, date, and ip do not vary, and so are not rele-
vant for building a model of normal system operation.
What remains is data that describes only very little
information about a file access such as which user,
which process, and what file, and does not provide
the context in which that access has occurred. Hence,
another host based sensor was developed to provide
this contextual information to augment information
collected by the FWRAP detector.

2.5 The Process Sensor

All Unix hosts provide a /proc virtual file-system.
This file-system makes available a simple interface to
internal kernel data structures in user-space [3].

The /proc file system exposes dozens of pieces of
information about each running process. Organized
by the numeric process identifier, PID, this informa-
tion allows one to monitor the execution of a process
from creation to termination. The Basic Auditing
Module (BAM) technology built as part of the AMG
architecture was used to implement a process sensor.
This PS BAM monitors 16 different parameters, in-
cluding command lines, execution environments, user

ID’s and open files. To reduce the data overhead,
only processes that exhibit a change in key parame-
ters are reported to the rest of the system. For ex-
ample, the following PS BAM produced message is a
single record showing the status of a web server oper-
ating on a particular host. Notice the XML tags that
identify the meaning of each piece of data, as well as
its data type.

<time 1>1052016959</time>

<cmdline s>/usr/local/sbin/bam/sensor_ps
</cmdline><pid i>1111</pid>

<ppid i>1</ppid><starttime 1>14373</starttime>
<state c>R</state> <priority i>0</priority>
<uid i>0</uid> <gid i>0</gid>

<tty i>0</tty> <wd s>/proc/1111</wd>

<ctime 1>0</ctime> <vsize u>1437696</vsize>
<sigcatch i>16387</sigcatch>

<fd s>/dev/console|pipe: [1494] |pipe:

[1495] | socket: [1536] | /proc|/proc/1111/fd|</fd>
<time 1>1052016959</time>

<cmdline s>syslogd</cmdline>

<pid i>702</pid> <ppid i>1</ppi 4>
<starttime 1>13111</starttime>

<state c>R</state> <priority i>0</priority>
<uid i>0</uid> <gid i>0</gid>

<tty i>0</tty> <wd s>/</wd>

<ctime 1>0</ctime> <vsize u>1507328</vsize>
<sigcatch i>90113</sigcatch>

Data such as this allows for monitoring of activities
such as the changing of user ID’s, the excessive use
of memory or processor time, or the accessing of files.
This data enriches the information available from the
FWRAP system.

2.6 PAD Detector

The data gathered by monitoring each file access is
aggregated and merged with the data gathered by
the process monitoring sensor. These two sources of
information create a rich set of information that de-
scribes in great detail a single file access. Each piece
of information may be regarded as a ”feature” and

hence each record is treated as a feature vector used
by PAD for training a normal model that describes
normal file accesses.

PAD models each feature and pairs of features as a
conditional probability. A single feature produces a
"first order consistency check” that scores the likeli-
hood of observing a feature value at run time. Second
order consistency checks score the likelihood of a fea-
ture value conditioned on a second feature. Thus,
given n features in a training record, PAD generates
n first order consistency checks, and nxn-1 second
order consistency checks.

The feature vector available by auditing file ac-
cesses and processes has 18 fields of information, some
of which may not have any value in describing or pre-
dicting a normal file access. For example, one such
feature may be the process identifier the PID, asso-
ciated with the file access. PID’s are ”arbitrarily”
assigned by the underlying OS and in and of them-
selves have no intrinsic value as a predictor of a file
access. Such fields may be dropped from the model.

After training a model of normal file accesses us-
ing the PAD algorithm the resultant model is then
used at runtime to detect abnormal file accesses. The
PAD detector is shown in figure 1. Each file access is
monitored by FiST and the PS sensor, a record is en-
capsulated and provided to the PAD detector, and an
alert is generated if the normal model deems the ac-
cess is abnormal. Alerts are generated via threshold
logic on the PAD computed scores.

As shown in Figure 1 the detector exists on the
user’s level as a background process. Having it run on
the user level can also provide additional protection of
the system as the sensor can be hard-coded to detect
when it is the subject of a process that aims to kill
its execution, or to read or write its files.

2.7 FWRAP Features

In order to detect anomalous file accesses, FWRAP
generates a model of normal file access activity. A
set of 8 features are extracted from each file access.
Using these feature values over normal data, a model
of normal behavior is generated. This model of nor-
malcy consists of a set of consistency checks applied
to the features. When detecting anomalies, the model

of normalcy determines whether the values in the fea-
tures of the current file access are consistent with the
normal data or not. If new activity is not consistent,
the algorithm labels the access as anomalous.

Consistency is determined by threshold logic. Each
record is tested and scored. If the minimum score of
all features is below the user defined threshold, an
alert is generated indicating an anomalous record has
been detected.

The FWRAP data model consists of 8 features
gathered from the FWRAP sensor and process sensor
(a subset of the 18 available features). The features
used in this study are as follows:

UID This is the user ID running the process

PPID The parent PID of the running process. This
feature may be helpful in linking multiple pro-
cesses launched by one user masquerading as
other users.

CMD This is the command line invoking the run-
ning process

WD the working directory of a user running the pro-
cess

TTY The terminal ID number assigned to a user
each time they login to the machine. This may
be useful since this number is assigned by the
OS differently for root and normal users, except
when a user suddenly becomes root (after he/she
successfully ran root attack).

FILE This is the name of the file being accessed.
This allows our algorithm to locate files that are
often or not often accessed in the training data.
Many files are accessed only once for special sit-
uations like system or application installation.
Some of these files can be changed to create vul-
nerabilities.

PRE-FILE This is the concatenation of the three
previous accessed files. This feature codes infor-
mation about the sequence of accessed files of
normal activities such as log in, Netscape, statx,
etc. For example, a login process typically fol-
lows a sequence of accessed files, for example,
.inputrc, .tcshre, .history, .login, .cshdirs, etc

FREQUENCY This feature encodes the access fre-
quency of files in the training records. This
value is estimated from the training data and
discretized into four categories:

NEVER (for processes that don’t touch any file),
FEW (where a file had been accessed only once
or twice),

SOME (where a file had been accessed about 3
to 10 times) and

OFTEN (more than SOME).

Alternative discretization of course are possible.
Note that we computed the standard deviations
from the average frequency of access files from
all user processes in the training records to get
the cut off for the SOME category. And thus a
access frequency falls in FEW or OFTEN cate-
gories are often from a file touched by kernel or
background process.

Examples of typical records gathered from the sen-
sors with these 8 features are:

500 1 /bin/login 1025 / dc2xx10
725-705-cmdline Some
1205,Normal

500 1244 ./kmod 1025 /home/ryan
0.3544951178 0.8895221054
Never 1253,Malicious

The last items are tab separated from the features
and represent an optional comment, here used to en-
code ground truth. The first record with pid=1205
was generated from a normal user activity. The sec-
ond was captured from an attack running the kmod
program to gain root access. The distinction is rep-
resented by the labels "normal” and ”malicious”.
These labels are not used by the PAD algorithm.
They exist solely for testing performance of the com-
puted models.

Another malicious record is

0 1252 sh 1025 /home/ryan
su meminfo-debug-insmod
Some 1254 ,Malicious

This record illustrates the results of an intruder
who gained root access. The working directory (wd)
is still at /home/ryan but the uid now changes to 0.

3 Experiments

We deployed the FWRAP system on a host machine
in our lab environment, an Intel Celeron 800MHz PC
with 256 RAM, running Linux 2.4 with an ext2 file-
system. This host was part of a Test Network En-
vironment which allowed us to run controlled tests
of malicious program without worrying about noise
from outside the network corrupting our tests. Data
was not gathered from a simulator, but rather from
runtime behavior of user’s on the target machines.

The output of the sensor system described here re-
sult in both a FWRAP output and process sensor
output. The merging of the two sources of informa-
tion were implemented by scripts. All other infor-
mation available in the process sensor such as CPU
load, and memory load were ignored. They do not
directly relate to file access and were not included in
the study.

We collected data for training over 5 days of nor-
mal usage from a group of 5 users. Each user used
the machine in typical way such as login, editing some
files on terminal, checking email, browsing some web-
site, etc and logout. The root user was also used to
do some system maintenance as well as some of their
routine work tasks.

This resulted in a data set of 313,634 records of
24 megabytes which we used to build a PAD model.
This model will be referred to as the ”clean model”,
although we note that it can tolerate some level of
noise. The size of the model was 486 megabytes. We
address the size of the models computed by PAD in
the concluding section.

Once the model was computed, one of the users was
chosen to be the ” Attacker”, who then used the ma-
chine for a period of 3 hours. Sometime between this
3 hours period, they ran the exploits from their home
account. These exploits are publicly available on the
Internet. The user was asked to act maliciously, and
to gain root privileges using the attack exploits on
hand. Once root control was acquired, the user fur-
ther misused the host by executing programs which
placed back-doors in the system.

The system was monitored while the attacks were
run over this 3 hour period. The resultant monitor-
ing produced 51,531 records of 4 megabytes from the

combined FWRAP and PS sensors. These records
were then classified with the PAD algorithm using
the PAD model.

The analysis of the models was run on a dual pro-
cessor 1500 MHz with 2 gig of ram. Total time to
build the model from the 24 meg of data was three
minutes, with memory usage at 14%. Running the
model against the 3 hour period to produce multiple
thresholds took 2 minutes with 40% of cpu usage and
14% of memory. Once a threshold was selected, the
3 hour period was analyzed in 25 seconds using the
PAD program.

3.1 Description of Attacks

We ran three different attacks to measure how well
the PAD algorithm could discern malicious attacks
from regular usage.

Two of our attacks, ptrace-kmod and kmod,
exploit the same weakness in Linux 2.2 and 2.4 (see
http://www.securitybugware.org/Linux/6072.html).
The weakness is root-exploitable because of how
the kernel handles module features. When a kernel
feature is needed in a process, the kernel spawns a
new process with euid and egid set to 0. Ptrace()
can then immediately be used to attach to the new
process and run arbitrary code with root access.
Our exploits both use the weakness to run a root
shell (in somewhat different ways).

Once root access is attained, an attacker would
want to hide any record of their existence, as well as
set up an easy way to remotely control the computer
without giving away the compromised state of the
machine. A rootkit is usually used. We used the
’t0rn’ rootkit, which is a pre-compiled rootkit widely
available online. tOrn contains binary versions of the
following tools:

/Jusr/bin/du
/Jusr/bin/find
/sbin/ifconfig
/bin/login
/bin/ls
/bin/netstat
/bin/ps

Jusr /bin/sz
/usr/bin/top

These "tools” are actually hacked and hide any ev-
idence that the machine is compromised. Since it is
assumed the rootkit is installed on a compromised
machine, it copies these files to their ’correct default’
location, hence they will be in the PATH.

TOrn also copies some of its files into
Jusr/src/.puta, and starts a sshd to allow the
attacker to reconnect to the machine.

4 Results

This section describes the results of our experimental
tests. The PAD algorithm evaluates each record out-
put by the sensors. By varying the threshold for the
consistency scores we were able to vary the detection
rate and false positive rate.

We ran the test data against the trained PAD
model, producing 64 scores for each consistency check
for each record (8 first order + 8x7 second order).
The minimum score over all consistency checks is
then tested against the threshold. If a record contain
consistency scores below the threshold, we consider
it is abnormal.

An example of the PAD output with threshold =
-2.9 is as follows:

0 1252 sh 1025 /home/ryan su meminfo-debug-

insmod Some :
2.385726 -1.278873 -1.991977
-2.944535 2.397863 2.342325
0.931558 2.224713 -1.266756 4.864607 1.170862 1.119658
1.170979 1.094596 -0.845582 -2.169715 1.037885 4.609045
1.082764 0.930569 0.176130 -2.589351 -2.924091 -0.127774
0.433996 2.193895 0.628596 0.897942 0.133137 0.054751
2.297798 2.899492 4.706853 6.600091 0.587283 4.013465 -
0.595098 0.721933 0.003740 0.783238 0.419870 1.098572
0.998816 -0.168477 0.722015 0.001877 0.766187 0.415934
1.098588 0.960322 -3.103159 -2.414797 -3.515270 -0.134781 -
0.520264 0.693147 1.385568 : 1254,Malicious : 8,33,65,67

The sequence of numbers appearing at the end dis-
plays which consistency checks are below the thresh-
old. We inspected these for each record marked as an
anomaly. We learned that the features UID, FILE
and FREQUENCY are the most important predic-
tors. Most inconsistency scores (i.e scores below the

-2.675945 1.993751 -0.175890
2.170739 2.133449 0.438297

threshold) are generated by those features

Based on the results from PAD output. We gener-
ated detection rates and false positive rates on both
a per record and per process basis.

4.1 Per record

In per record, we defined ” Detection Rate” as the per-
centage of records labeled ”malicious” that produced
PAD scores below the threshold. The ”False Positive
Rate” is the percentage of records labeled ”normal”
that likewise produced PAD scores that were below
the threshold.

We applied different thresholds, illustrated in Ta-
ble 1, producing different detection rates and false
positive rates. The rates are then plotted using an
ROC curve displayed in figure 2.

Threshold | Detection False

Rate Positive
-6.9 0.000000 0.000504
-6.8 0.034482 0.000679
-6.4 0.068965 0.000795
-6.1 0.112068 0.000834
-5.9 0.155172 0.001285
-5.8 0.181034 0.001028
-5.5 0.198275 0.002833
-5.4 0.250000 0.002969
-5.3 0.267241 0.003609
-5.1 0.284482 0.004560
-5.0 0.293103 0.005375
-4.7 0.318965 0.006442
-4.6 0.405172 0.007044
-4.5 0.422413 0.007315
-4.4 0.431034 0.007665
-4.2 0.439655 0.008363
-4.1 0.448275 0.009392
-4.0 0.474137 0.010479
-3.6 0.517241 0.018319
-3.5 0.586206 0.018610
-3.1 0.603448 0.024373
-2.9 1.000000 0.027633

Table 1: Varying the threshold in Per Record detec-
tion and its effect on Detection and False Positive
Rate

0.8

0.6

Detection Rate

04

02

0 I I I I I
0 0.005 0.01 0.015 0.02 0.025 0.03

False Positive Rate

Figure 2: Per Record ROC curve for Detection Rate
versus false Positive Rate

4.2 Per process

There were 521 processed generated from the 3 hours
period experiment. 46 processes were generated dur-
ing the attack period (i.e. time between the attacker
launched the exploits and ran Trojan software after
he gained root). However, some of the processes gen-
erated during this time were not purely from the at-
tack. (For example, processes from the sensors or
from system logs accessed during this time). We
eliminated those processes and classified the list of
39 processes as emanating from attacks.

A process is identified as malicious if all of its
records are labeled anomalous by PAD. An alter-
native decision process may apply. For example, a
process might be considered malicious if it generates
one anomalous record or some threshold number of
anomalous records. The ROC curve presented is for
the all or none strategy.

We define the ”Detection Rate” in the per process
experiment to be the percentage of processes with la-
beled malicious records that were detected. The False
Positive Rate is the percentage of normal processes
with normal records which were falsely detected as
attacks.

Table 2 illustrates the results of detection rates
vs. false positive rates on a Per Process basis. The

rates are then plotted using an ROC curve displayed
in Figure 3.

Table 3, is sorted in order of consistency check
score. This table shows some of the highest and low-
est scores of 18 processes generated from one of the
attacks and about 30 processes from normal usage
before and after the attack.

In our tests, the false positive rates classified on
the per process basis were higher than the false pos-
itive rates on a per record basis. This was found to
be due to the fact that we were constrained by the
number of processes (only 521 processes over 51,531
records) in our experiments. Moreover, the number
of records in each process is not equally distributed,
skewing the distribution somewhat. Consequently,
normal processes that have only one or two records
are more likely to cause false positive alerts than a
process which has more records. As we can see from
table 3, those processes higher on the list classified as
”Normal” with only one record are among those that
caused the false positive (i.e. when we applied the
threshold = -2.9 resulting in 100% detection rate)

0.8 -

0.6 -

Detection Rate

0.4 -

0.2 -

0.02 0.04 0.06 0.08

False Positive Rate

0.1 0.12 0.14

Figure 3: Per Process ROC curve for Detection Rate
versus false Positive Rate

For the test case studied here, it appears that the
good detection performance indicates that file ac-
cesses exhibit fairly consistent behavior. Future work
includes a range of studies in different environments.
We address some of the open research questions this

10

Threshold | Detection False
Rate Positive
-6.9 0.00 0.0035
-6.8 0.04 0.0047
-6.4 0.08 0.0048
-6.1 0.11 0.0050
-5.9 0.16 0.0054
-5.5 0.17 0.0118
-5.3 0.19 0.0164
-5.1 0.20 0.0223
-5.0 0.21 0.0278
-4.6 0.31 0.0364
-4.5 0.33 0.0381
-4.4 0.34 0.0391
-4.2 0.35 0.0432
-4.1 0.36 0.0473
-4.0 0.39 0.0523
-3.6 0.44 0.0687
-3.5 0.52 0.0708
-3.1 0.54 0.1052
-2.9 1.00 0.1259

Table 2: Varying the threshold in Per Process de-
tection and its effect on Detection and False Positive
Rate

line of work has revealed in our concluding remarks.

5 Conclusions

By using file system access on a Linux system, we are
able to label all processes as either attacks or nor-
mal, with high accuracy and low false positive rate.
For the experiments performed in this study, we have
shown that the file system is a valuable auditing point
on a IDS system.

The work reported in this paper is an extension of
our research on anomaly detection. The PAD algo-
rithm has been previously applied to network traffic,
as well as the Windows Registry, as described earlier
in this paper. There are a number of open research
issues that we are actively pursuing. These issues in-
volve calibration, pruning, feature selection, concept
(or environment) drift, and correlation.

Briefly, we seek automatic means of building

anomaly detectors for arbitrary audit sources that
are well behaved, and are easy to use. As it now
stands, AD technology is a bit of a black art. To be
sure, the use of anomaly detectors in security appli-
cations is still early and much science yet needs to
be done to understand their fundamental value and
limitations, and their practical implementation and
deployment.

With respect to calibration, one would ideally like
a system such as FWRAP, or RAD, to self-adjust its
thresholding to minimize false positives while reveal-
ing sufficient evidence of a true anomaly indicative
of an abuse or an attack. It is important to un-
derstand, however, that AD models should be con-
sidered part of the evidence, and not be depended
upon for the whole detection task. This means AD
outputs should be correlated with other indicators
(even other AD models computed over different au-
dit sources or different features or different AD al-
gorithms) in order to confirm that an attack is truly
occurring. Thus, it would be a mistake to entirely fo-
cus on a well calibrated threshold for an AD simply
to reduce FP’s. It may in fact be a better strategy to
generate more alerts, higher numbers of FP so that
correlating alerts with other evidence would reveal
the true attacks that otherwise would go undetected
(had the AD threshold been set too low).

In the experiments run to date PAD produces mod-
els that are expensive in memory. There are sev-
eral enhancements that can be implemented to alle-
viate its memory consumption requirements. These
include pruning of features after an analytical evalua-
tion that would indicate no possible consistency check
violation would be possible. Furthermore, most of the
memory structures used by the current implemen-
tation of PAD can be reimplemented using Bloom
Filters[4] to generate considerable compression ad-
vantages.

Finally, two questions come to most minds when
they first study anomaly detectors of various kinds;
how long should they be trained, and when should
they be retrained. These issues are consistently re-
vealed due to a common phenomenon, concept (or
environment) drift. What is modeled at one point
in time represents the “normal data” for that data
drawn from the environment for that period of time,

11

but the environment may change (either slowly or
rapidly) which necessitates a change in model.

The particular features being drawn from the en-
vironment have an intrinsic range of values; PAD is
learning this range, and modeling the inherent ” vari-
ability” of the particular feature values one may see
for some period of time. Some features would not be
expected to vary widely over time, others may be ex-
pected to vary widely. PAD learns this information
(or an approximation) for the period of time it ob-
serves the data. But it is not known if it has observed
enough.

What is needed is a decision procedure, and a feed-
back control loop, that provides the means to deter-
mine whether PAD has trained enough, and deems
when it may be necessary to retrain a model if its
performance should degrade.

We intend to continue this line of research using
the various audit sources we have at our disposal,
the FWRAP AD sensor, the focus of this paper, and
the RAD and Network traffic sensors that employ the
PAD algorithm.

Another interesting open question is how one may
protect the FWRAP system from being tampered
with. By storing the model on the kernel level, un-
derneath the normal mount, the system would ap-
pear invisible to the overlying file system, allowing
the model to be protected from malicious users. It
remains to be seen how expensive an operation this
may be.

References

[1] Frank Apap, Andrew Honig, Shlomo Hershkop,
Eleazar Eskin, Salvatore J. Stolfo. Detecting Mali-
cious Software by Monitoring Anomalous Windows
Registry Accesses. Fifth International Symposium
on Recent Advances in Intrusion Detection (RAID-
2002). Zurich, Switzerland: October 16-18, 2002.

[2] Balzer, R. Mediating Connectors 19th IEEE In-
ternational Conference on Distributed Computing
Systems Workshop, 1994.

[3] Bauer, Bodo and Terrehon Bowden. The /proc
Filesystem. http://www.linuxhq.com/kernel/
v2.2/1/Documentation/proc.txt. January 1999.

[4] B. H. Bloom. Space/time trade-offs in hash cod-
ing with allowable errors. Communications of the
ACM, Vol 13,Issue 7 (July 1970)

[5] Forest, St., A. Hofmeyr, A. Somayaji and T. A.
Longstaff. A sense of self for unix processes, pages
120-128, IEEE Computer Society, 1996.

[6] S. A. Hofmeyr, S. Forrest, and A. Somayaji. In-
trusion detection using sequences of system calls.
Journal of Computer Security, 6:151-180, 1998.

[7] Andrew Honig, Andrew Howard, Eleazar Eskin,
Sal Stoflo. Adaptive Model Generation: An Archi-
tecture for Deployment of Data Minig-based Intru-
sion Detection Systems. Data Mining for Security
Applications. Kluwer 2002.

[8] C. Ko, G. Fink, and K. Levitt. Automated de-
tection of vulnerabilities in privileged programs by
execution monitoring. 10th Annual Computer Se-
curity Applications Conference, pages 134— 144,
December 1994

[9] K M.C. Tan and Roy A. Maxion. Why 67 Defin-
ing the Operational Limits of stide, an Anomaly-
Based Intrusion Detector.

[10] Wenke Lee, Sal Stolfo, and Phil Chan. Learn-
ing Patterns from Unix Process Execution Traces
for Intrusion Detection. AAAT Workshop: AT Ap-
proaches to Fraud Detection and Risk Manage-
ment, July 1997

[11] Okena Incore
http://www.okena.com/

Architecture,

[12] Description of the Microsoft Windows Registry.
http://support.microsoft.com /?kbid=256986

[13] Rosenthal. Evolving the Vnode Interface. Usenix
Proceedings, pg 107-118, 1990.

[14] Sana Security Profile
http://www.sanasecurity.com

Technology

12

[15] Kevin Timm, Strategies to Reduce
False Positives and False Negatives.

http://online.securityfocus.com/infocus/1463

[16] D. Wagner and P. Soto. Mimicry attacks on host
based intrusion detection systems. Ninth ACM
Conference on Computer and Communications Se-
curity, 2002.

[17] Erez Zadok and Ion Badulescu. A Stackable File
System Interface For Linux. LinuxExpo 99. May
1999.

[18] Erez Zadok and Jason Nieh. FiST: A Language
for Stackable File Systems. Usenix Technical Con-
ference. June 2000

[19] Erez Zadok, Ion Badulescu, and Alex Shen-
der. Extending File Systems Using Stackable Tem-
plates. Usenix Technical Conference. June 1999.
page 7.

[20] Erez Zadok. Stackable File Systems as a Security
Tool. Columbia U. CS TechReport CUCS-036-99.
December 1999. page 5.

PID Program Name Total Minimum | Maximum | Classification
Records Score Score
1252 /tmp/x0x 1 -6.882326 6.600091 Malicious
1249 as 1 -6.882326 6.600091 Malicious
1306 | w 1 -6.882326 7.275401 Malicious
1248 /usr/lib/gce-1ib /i386 2 -6.476861 6.600091 Malicious
-redhat-linux/2.96 /ccl
1246 gee 2 -6.189179 6.600091 Malicious
1324 | /usr/lib/gcc-lib/i386 3 -6.177048 | 8.527128 Malicious
-redhat-linux/2.96 /cpp0
1252 ./kmod 1 -5.966035 6.600091 Malicious
1254 su 10 -5.819753 8.725036 Malicious
1253 | /sbin/modprobe 2 -5.755573 7.538759 Malicious
1328 | /bin/bash 1 -5.050946 7.538759 Malicious
1317 ftp 10 -4.685101 5.148742 Malicious
1319 /bin/sh 1 -4.503447 7.275401 Malicious
1319 | /usr/lib/sa/sadc 1 -4.503447 4.065055 Malicious
1314 | rm 2 -4.036982 7.275401 Malicious
1006 | crond 5 -3.686345 6.20679 Malicious
1245 sh 1 -3.676769 6.600091 Malicious
1276 | -bash 1 -2.924091 7.275401 Malicious
1126 /sbin/mingetty 1 -7.568797 7.538759 Normal
737 | rpc.statd 1 -7.314065 6.20679 Normal
1093 | /usr/local/sbin 191 -6.745411 8.940659 Normal
/bam/sensor_ps
1618 | sendmail: 3 -6.671864 4.531495 Normal
1350 | whereis 2 -6.476861 7.275401 Normal
1299 /usr/bin/python 28 -6.266399 6.600091 Normal
1205 | /bin/login 131 -5.570593 7.538759 Normal
1511 usleep 1 -5.177578 7.538759 Normal
1357 | tput 1 -5.12645 7.275401 Normal
1315 /usr/bin/ 1 -4.647408 7.275401 Normal
gnome-terminal
1147 | update 1 -4.631034 7.538759 Normal
1517 | nautilus 4 -4.241943 7.275401 Normal
939 | xinetd 1 -3.948424 7.538759 Normal
970 gpm 1 -3.605181 7.538759 Normal
1356 deskguide-applet 2 -3.56814 6.600091 Normal
1291 magicdev 5 -3.436208 7.275401 Normal
1354 | tasklist_applet 3 -3.407676 6.600091 Normal
1196 -bash 1 -2.924091 7.275401 Normal
1229 /bin/bash 1 -2.924091 7.275401 Normal
1229 /bin/sh 3 -2.924091 7.275401 Normal
1199 cat 2 -2.924091 7.275401 Normal
1440 | /usr/bin/gnome-session 6 -2.924091 7.275401 Normal
1215 grep 1 -2.899781 7.275401 Normal
1509 gconfd-1 7 -2.862862 7.538759 Normal
1210 Is 1 -2.671522 7.275401 Normal
1304 oafd 1 -2.532905 7.538759 Normal
1484 sawfish 45 -1.474298 7.275401 Normal
1132 | /usr/local/sbin 131 -1.566555 7.538759 Normal
/bam/listen
702 syslogd 817 -1.297392 7.538759 Normal
689 klogd 112 -1.297392 7.538759 Normal
1222 | Jete/X11/X 1 -1.99501 7.275401 Normal

Table 3: Trace of both normal and attack data.
In this attack, the attacker ran kmod program (pid
1252) to gain root control of the machine. After com-
promising the system the attacker executed some nor-
mal processes to cover the attack. Example: w’ was
run to see if anyone else currently logged into the
system (pid 1306). ’su’ to change to new user (pid
1254), ’ftp’ to an outside network to get rootkits (pid
1317). Next the attacker compiled and ran the tool
and script (pid 1248, 1324, 1246). Finally, the at-

tacker removed the logs file (pid 1314) 13

