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Abstract— Modern non-volatile memory storage de-
vices operate significantly faster than traditional rotating
disk media. Disk paging, though never intended for
use as an active memory displacement scheme, may be
viable as a cost-efficient cache between main memory
and sufficiently fast secondary storage.

However, existing benchmarks are not designed to
accurately measure the microsecond-level latencies at
which next-generation storage devices are expected to
perform. Furthermore, full exploitation of disk paging
to fast storage media will require considerations in the
design of operating system paging algorithms.

This paper presents pmbench – a multiplatform syn-
thetic micro-benchmark that profiles system paging char-
acteristics by accurately measuring the latency of paging-
related memory access operations. Also presented are
sample pmbench results on Linux and Windows using a
consumer NAND-based SSD and a prototype low-latency
SSD as swap devices. These results implicate operating
system-induced software overhead as a major bottleneck
for paging, which intensifies as SSD latencies decrease.
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1. INTRODUCTION

Pmbench is a user-level micro-benchmark designed
to profile system paging performance by measuring
memory access latency during fault-intensive memory
operations. It is intended to serve as a tool for system
architects to diagnose and address issues with paging
subsystem. Designed with low-latency SSDs in mind,
pmbench aims to accurately measure sub-microsecond
intervals while incurring minimal overhead.

Pmbench profiles a system’s paging performance by
collecting memory access latencies while systemati-
cally consuming large quantities of memory to induce
paging activity. It measures the time taken for each
memory access and compiles the results by keeping
a histogram of the measured latencies. Pmbench is
carefully written to minimize unnecessary paging ac-
tivity by using compact, page-aligned data structures
and code segment layout.

Pmbench supports Linux and Windows and could be
ported to other POSIX-compliant operating systems. It
is launched from the command line, creating one or
more threads to conduct paging latency measurement
based on user-provided parameters. Upon completion,
it generates an XML report, which can be read with
a companion GUI tool to visually graph and compare
data points between benchmarks and further produce a
condensed comma-separated report.

We used pmbench to compare the paging perfor-
mance of Linux and Windows under a heavy paging
load using a NAND-based SSD and an experimental
low-latency SSD as swap devices. We confirmed that
NAND SSDs are entirely unsuitable for DRAM dis-
placement of workloads with working sets exceeding
available physical memory. We also found that with
low-latency SSD both operating systems suffer from
significant software overhead, though Linux paging
fares far better than that of Windows.

The rest of this paper is organized as follows:
Section 2 presents background on SSDs and system
paging. Section 3 motivates pmbench’s design and
current implementation. Section 4 presents pmbench
measurements performed on Linux and Windows using
low-latency SSDs. Section 5 discusses related works.
We conclude in Section 6.

2. BACKGROUND

Solid-State Drives (SSDs) store data electronically in
Non-Volatile Memory (NVM) without moving parts,
substantially improving bandwidth and latency. SSDs
are designed to fill the role occupied by hard drives and
thus retain the same storage block interface, consisting
of a flat address space of fixed-size blocks, whose size
typically ranges from 512 to 4K bytes. The host com-
puter reads and writes on a per-block basis, expecting
the device to fetch or update the entire block. Almost all
storage I/O standards operate under this block interface.



SSDs are equipped with a controller to manage their
NVM specifics while retaining the block interface. For
example, NAND Flash, used by most of todays SSDs,
does not allow in-place writing to a block. Instead,
writes must be done on erased blocks, and erasure
operations can only be performed in granularities larger
than a block. NAND SSD controllers address this issue
by implementing an indirection layer that maps a host-
visible block address to an internal Flash address. This
layer creates the illusion of updating a block in-place,
when in fact it writes to a previously erased Flash, and
queues the old Flash as invalid and subject to erasure.

Future SSDs equipped with next-generation NVM
will outperform current NAND Flash-based SSDs not
only by having faster access latencies, but also by
supporting in-place update, which significantly reduces
overhead from the SSD controller. Therefore, a low-
latency SSD capable of delivering a 4KiB block within
a couple of microseconds in a sustained load is entirely
plausible.

SSDs can thus improve the performance of system
paging, by which an OS transfers the contents of
fixed-size memory pages to/from a storage device.
Paging implements virtual memory, enabling execution
of programs whose collective working set exceeds the
size of available physical memory. The storage device
used for paging is also known as a swap device.

Page fault is the processor protection mechanism al-
lowing operating systems to implement paging. A page
fault is triggered when a processor accesses a virtual
address that translates to a memory page not physically
mapped. Once triggered, the processor invokes the OS’s
page fault handler, which ensures the page is loaded
into memory, updates the corresponding page mapping,
then resumes the instruction that triggered the fault.

If the fault address refers to a page which hasn’t been
mapped, but the content of the page is still in memory,
the OS can handle it without triggering storage I/O.
This type of fault is known as soft or minor fault and
can be handled very quickly. If the content of the page
cannot be found in memory but is instead located on
the swap device, the OS must schedule storage I/O to
bring in the data. This is known as a hard or major
fault and can take a very long time to resolve.

3. DESIGN AND IMPLEMENTATION

Pmbench is motivated to profile OS paging perfor-
mance when a low-latency SSD equipped with next-gen
NVM is used as the swap device. We believe, and have
confirmed, that current operating systems are inefficient

when paging to such devices. As paging was never
expected to be fast, its implementation has remained
unoptimized, as is apparent when the system swaps
to low-latency SSDs. Detailed quantitative analyses
of paging must follow to identify and address the
inefficiencies inhibiting paging performance.

Pmbench profiles OS paging performance by il-
lustrating the distribution of user-perceived latencies
of memory accesses that result in page faults. This
requires the systematic consumption of a large quantity
of memory in an artificially-generated memory access
pattern. Pmbench measures the time taken for each
memory access and compiles the results by keeping
population counts for latencies measured.

Pmbench’s primary technical concern is minimizing
overhead from internal memory use. Note that this re-
quirement precludes the use of a trace-based benchmark
or recording all measurement data, which would require
substantial use of memory and storage I/O, significantly
degrading measurement under heavy paging. Although
it is impossible to completely prevent interference,
efforts were made to minimize memory loads incurred
by measurement infrastructure.

The narrow timescale that pmbench tries to ac-
curately measure is another challenge. Events with
microsecond-level latency resolution are of interest in
profiling operating system paging performance with
fast SSDs. In modern systems, a few microseconds
translates to tens of thousands of cycles, necessitating
close attention to the measurement methods and deli-
cate instruction-level tuning.

Pmbench generates rich access latency statistics
in the form of an XML file, which the companion
graphical data analysis tool can import, manage, and
use to generate graphs visualizing the latency his-
tograms. This comparison can then be exported to a
Comma-Separated Value (CSV) file for further process-
ing/analysis with external applications.

Pmbench is executed from the command line with
a variety of optional parameters, summarized in Ta-
ble 1. Pmbench uses a processor timestamp counter to
measure the time taken to access an address. The page
frame number of each access is determined by a user-
selected spatial memory access pattern, each mimicking
various statistical distributions; currently the uniform
(true random), normal (bell-shaped) and Zipf (long-tail)
distributions are supported, along with a deterministic
fixed-stride pattern with wraparound. Page offsets are
randomly selected with uniform distribution, or can be
set to a user-provided fixed value.



Option (Keyword) Value Description
Map size (-m) integer The size of the memory map in mebibytes.
Set size (-s) integer The portion of the memory map in mebibytes in which accesses will be performed.

Access pattern (-p)
“uniform” Access pages in a uniform random fashion (default).
“normal” Access random pages with normal distribution.
“linear” Access pages in deterministic fashion with fixed stride.

Shape of pattern (-e) float Optional parameter determining the shape of the chosen access pattern’s distribution.
Read/write ratio (-r) 0–100 Percentage of accesses that will be reads. Default is 50.
Number of threads (-j) integer The number of measurement threads.

Timestamp method (-t)
“rdtscp” Use x86’s rdtscp instruction (default).
“rdtsc” Use x86’s rdtsc instruction.
“perfc” Use OS-provided timestamp method.

Delay (-d) integer Delay between accesses in clock cycles. Default is 0.
Offset (-o) integer Offset into the page being accessed. Specifying -1 (default) results in uniform random offset.
Cold (-c) boolean Skips the warm-up phase of benchmark.
Initialize (-i) boolean Randomly initialize the memory map.
File name (-f) string File name for XML output file.

Table 1. Command-line options of pmbench. The last argument of the command line specifies the desired duration of the benchmark in
seconds. The Initialize -i option was useful in circumventing memory compression newly introduced in Windows 10 [8].

Access instructions, hand-written in assembly to en-
sure precision, are bookended by a pair of timestamps,
whose difference in values will measure in clock cycles
the time taken for the memory operation to complete.
If the accessed address is in main memory and already
mapped in its address space, the reference will take
only a few clock cycles, typically resulting in less
than 0.5 µs. If an access results in either a minor
or major fault, the timestamp difference will be the
fault handling latency. The measured latency is then
converted to nanoseconds and used to increment a
per-thread occurrence counter. The occurrence counter
array is constructed in such a way that it first divides
intervals into buckets of latencies log base-2. Buckets
of lower band (between 28 and 223 ns) are further
divided into 16 sub-bands with linear divisions1.

This tiered method of accounting allows pmbench
to measure a wide range of latencies, from sub-
microsecond to thousands of milliseconds, while pre-
serving a detailed profile of smaller samples within sub-
10 microsecond intervals where next-gen SSD devices
are expected to operate. Pmbench supports a user-
specified number of worker threads and increments per-
thread latency counters. Care was taken to construct the
in-memory counter so that each measurement thread
requires a single page. Pmbench minimizes its code
footprint by avoiding library function calls in its critical
path.

There are two types of memory access: “read” –

1For example, a latency measurement of 9,231 ns will increment
the 3rd counter in the 8,192 (213) - 16,384 (214) ns bucket.

aligned 4-byte load and “write” – aligned 4-byte store.
The 4K page dedicated to each thread for counting
occurrence is divided into two 2K counter arrays, each
counting for reads and writes. On operating systems
that implement memory compression, the allocated
memory map can be optionally initialized with random
bits to circumvent its effects. Additionally, pmbench
collects OS-reported memory and paging statistics over
the course of a benchmark run.

The companion GUI tool produces line graphs from
the histograms of pmbench result XML files. The pa-
rameter set for graphing/export is specified with drop-
down menus; the radio buttons specify which variable
will be used as the basis of comparison in the graph as
well as exported CSV files.

4. EVALUATION

To demonstrate its utility, we used pmbench to eval-
uate the paging characteristics of Linux and Windows
using SSDs as swap devices. The devices tested include
a conventional NAND-based SSD and a prototype low-
latency SSD.

4.1. Experimental setup

All measurements were conducted on a x86 desk-
top machine with 4.0 GHz quad-core Intel i7-6700K
processor and Z170 chipset. The machine is populated
with total 16 GiB DRAM truncated to 2 GiB memory
by setting OS boot parameters. An SSD is dedicated as
the boot drive for both Linux and Windows partitions,
each selected upon boot.



Samsung’s 850 EVO 500 GB SSD is connected
via SATA 6Gb/s and used as the swap device for
NAND SSD measurements. The peak performance of
the Samsung SSD is rated at 100 µs latency for 4KiB
random reads at queue depth of 1, and 25 µs for random
writes, but the SSD buffers write in internal DRAM,
thus sustained average write latency is expected to be
at least 100 µs. For low-latency SSD measurements, we
used a prototype SSD which simulates the performance
of low-latency NVM media. This low-latency SSD uses
NVM Express protocol on 8 lanes of PCIe Gen 2 bus
and is capable of sustained latencies of 5 µs for both 4
KiB random reads and writes at queue depth of 1.

On Linux we used a standard installation of Fedora
23 Workstation using stock 64-bit kernel version 4.3.5
with page clustering disabled. For Windows we used
64-bit Windows 10 Professional with a custom-sized
pagefile optimized for interactive applications. On both
operating systems, only the SSD being tested was
enabled as a swap device.

We ran pmbench with normal process priority on
four combinations of OS and SSD. The results seen
here each represent the average of 25 identical bench-
marks run for 5 minutes with two worker threads ac-
cessing 8 GiB of virtual memory in a uniformly random
fashion. The memory was randomly initialized and the
read/write mixture set at 50%.2 We ran the benchmark
after the OS enters quiescent state from fresh boot.
We did not disable background processes/services but
ensured no significant activity (e.g., antivirus scan)
interfered with measurement.

4.2. Analyzing pmbench results

We illustrate the analysis of pmbench results by
using measurement data from Windows 10 with the
low-latency SSD as swap device. Figure 1 shows the
access latency population count (i.e., histogram) plotted
over latency as the X-axis in log-scale. The two graphs
represent the same data, but the top graph’s Y-axis
uses a linear scale whereas the bottom graph uses a
logarithmic scale. Read counts (black dash) and write
counts (gray solid) are plotted separately, but there is
no meaningful difference between them for accesses
involving major faults.

As shown by the peak of the graph, the most frequent
access latency is at 14.1 µs. This implies that the
majority of major faults that go through the frequent-

2Exact command was: pmbench -m 8192 -s 8192 -j 2 -r

50 -d 0 -o -1 -p uniform -t rdtscp -c -i 300
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Figure 1. Access latency histogram for Windows 10 with low-
latency SSD. The two graphs plot the same data but the bottom
graph uses a log scale on Y-axis to highlight the presence of long-
latency faults. Both graphs use log scale on X-axis for latency.

path have software overhead of about 9 µs – almost
twice the SSD latency.

Left of the peak are a substantial number of accesses
not resulting in page faults. These are the expected
‘hits’, accessing addresses that just happen to be physi-
cally mapped at the time. In our Windows setup around
12% of all accesses result in hits. This is consistent
with the fact that around 1 GiB of the 2 GiB system
DRAM was available to pmbench after accounting for
the kernel’s pinned memory.

The histogram exhibits long-tail, meaning there are
a substantial number of extremely long-latency faults
that heavily increase average latency and therefore
hurt overall paging performance. Not surprisingly, the
average latency of all major faults is 36.2 µs, far above
the 14.1 µs peak latency. The average pure software
overhead – latency from operating system processing –
is therefore 31.2 µs, 624% of the 5 µs pure hardware
latency.

Pmbench’s detailed histogram can guide optimiza-
tion of paging to low-latency SSDs. Measurement data
suggests the frequent-path for major faults is too slow.
Frequent-path latency could be reduced by eliminating
routines unnecessary for low-latency SSDs, and possi-
bly by employing polled I/O instead of interrupt-driven
I/O [22]. Furthermore, there are too many long-latency
faults: analysis shows that 33% of total execution time



Swap device (SSD) type: Low-latency SSD NAND SSD
Operating system: Linux Windows Linux Windows

1 Average latency of all accesses including hits: 7.0 µs 32.6 µs 193 µs 369 µs
2 Most frequent major-fault latency: 8.2 µs 14.1 µs 131 µs 385 µs
3 Average latency of all major-faults: 8.6 µs 36.2 µs 236 µs 440 µs
4 Average OS overhead for major-faults: 3.6 µs 31.2 µs 136 µs 340 µs
5 OS overhead as percentage of media latency: 72% 624% 136% 340%

Table 2. Comparison of paging overhead. The last row shows the software overhead of paging as percentage of raw media latency, using
5 µs as media latency for the low-latency SSD and 100 µs for NAND SSD. Refer to Section 4.2 for further explanation of each row.

is spent on faults taking longer than 100 µs to handle,
and 12.5% on faults taking 1 ms or more. Redesign
of process scheduling policy involving paging in low-
memory conditions could address these long-latency
faults.

4.3. Paging performance comparison

We performed the same analysis on the data mea-
sured from all four combinations of OS and SSD, which
is summarized in Table 2. Results from NAND SSDs
confirm their unsuitability as DRAM displacements
for workloads whose working set exceeds available
physical memory. Although NAND SSDs can greatly
speed up the tasks traditionally performed by HDDs
such as file I/O, its fault service latency of 200 µs
or more can easily thrash the system. The maximum
sustained bandwidth of swap on NAND SSD is merely
20 MiB/sec, which is three orders of magnitude smaller
than DRAM bandwidth.

In contrast, the low-latency SSD looks much more
promising for use as DRAM displacement, though fur-
ther OS optimization seems necessary. Measurements
show the low-latency SSD delivering performance far
superior to the NAND SSD on both OSes, due pri-
marily to substantially lower media access latency.
However, the low-latency media demonstrates that a
high percentage of the average fault latency can be
attributed to inefficiencies of the software component.

It also shows that the current version of Linux
handles low-latency SSD paging significantly better
than Windows 10: Windows is 8.7 times slower than
Linux in processing faults in low-memory conditions.
Windows suffers from slow frequent-path and ineffi-
cient scheduling policy as discussed in Section 4.2.
Linux, though faring better than Windows, still has
room for improvement: the average 3.6 µs OS overhead
translates to a substantial 14,400 clock cycles. We
believe pmbench will prove useful in pinpointing these
system bottlenecks.

5. RELATED WORKS

Low-latency SSDs will use next-generation non-
volatile memory (NG-NVM) media. Although the in-
cumbent NAND Flash technology continues to achieve
higher bit density by going 3D [17], it suffers from
inherent latency and management issues preventing
DRAM-like usage [10]. NG-NVMs include Spin-
Transfer-Torque-RAM [13], [18], which is more suited
to replace SRAM cache, and Resistive RAM (ReRAM)
[19], which is cost-inefficient for mass market.

Phase-Change Memory (PCM) [16], [20] is the most
promising NG-NVM technology at present, and thus
the technology which our low-latency SSD was chosen
to model. 3D Xpoint memory, recently announced for
volume production by Intel and Micron, has perfor-
mance closely resembling that of PCM.

The emergence of SSDs has renewed interest in
storage system optimization and differentiation. The
idea of using SSDs for DRAM displacement has also
been explored for NAND SSDs via a user-level custom
memory allocator [5]. NG-NVM media research has
focused on its direct integration onto the memory bus
[7], [9], [11].

Virtual memory and demand paging are classic topics
covered by most OS textbooks and considered matured.
Even the ideas of recoverable, persistent virtual mem-
ory [15] and compressed virtual memory [21] are not
new. However, the rapidly changing platform landscape
makes visiting those ideas worthwhile. Failure-atomic
msync() [14] for example examines the memory
persistence issue in the context of widespread Linux
[6] and SSD use as a fast-backing persistent store.

The app-based usage pattern in smartphones and
tablets led Windows 10 to introduce memory com-
pression, enabling efficient app-swaps [8]. Commercial
adoption of memory compression attests to the feasibil-
ity of using low-latency SSDs for DRAM displacement
via paging. If done efficiently, paging to low-latency
SSDs would likely have similar costs to memory com-



pression; pmbench may assist in optimizing operating
systems and platforms for this purpose.

Micro-benchmarks are useful for systems engineers
to find inefficiencies and fine-tune with surgical pre-
cision. LMBench [3], [12] has long been used to
measure performance of OS system calls. For storage
systems, FIO [1] and IOMeter [2] are well-known
micro-benchmarks that produce detailed storage stack
statistics. However, existing benchmarks are not de-
signed to accurately measure paging performance with
microsecond-level precision. Pmbench aims to fill that
void.

6. CONCLUSION

Low-latency next-generation SSDs are already com-
ing to market. Using them as a fast paging space could
be a cost-efficient alternative to large pools of DRAM.
However, as we have confirmed using pmbench, this
cannot occur until measures are taken to improve the
demonstrably inefficient performance of current operat-
ing systems when paging to such low-latency devices.
Systems developers can use pmbench’s detailed paging
performance data to locate inefficiencies at the source
and explore possible solutions.

In the future we intend to improve pmbench by
supporting additional operating systems and synthesiz-
ing memory access patterns with greater accuracy by
analyzing patterns obtained from real workloads.
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