
Assignment 4: Breadth First Search Using a Circular Linked List Implementation of a Queue
Name: Jimi Andro-Vasko
Date: 3/25/14

Program Input/Output:
• An integer is read first which will be the number of nodes in the graph
• Each subsequent row is read and each row has 2 integers which represent an edge from the first 

vertex to the other
• The output will be the out-neighbor list for all the vertices
• The program will also output all the vertices in breadth first search order
• Only integers will be read and the first integer which indicates the number of nodes will not be 

greater than 100
 

High Level View:
• The number of nodes where read and an out-neighbor list was created
• Then starting from vertex 0, the program marked all the out-neighbors and enqueue them
• When a value was dequeued, all of its non marked out-neighbors are then marked and enqueued
• The program terminates once the queue is empty

Implementations/Specifications:
• A circular linked list class was implemented to represent a circular queue where each node was 

a dynamically allocated struct
• The out-neighbor list was implemented using an array of structs in which there was a pointer 

field that pointed to the next vertex in the out-neighbor list
• There was a constructor and two methods that were used to manipulate the queue, they were 

enqueue and dequeue and there was a print method which outputted the out-neighbor list
• The enqueue and dequeue methods maintained a dummy node for the circular queue 

implementation to avoid having to deal with an extra tail pointer
• The control of how values where enqueued and dequeued and the overall implementation of 

breadth first search were all done in int main

Compiling/MakeFile/Execution:
• No make file was used in this assignment
• The GNU Linux Compiler was used to compile the program using g++ bfs.cpp
• The output file generated by default was a.out and ./a.out < input.txt where input.txt is the input 

file which was read by using linux redirection


