Assignment 4: Breadth First Search Using a Circular Linked List Implementation of a Queue
Name: Jimi Andro-Vasko
Date: 3/25/14

Program Input/Output:

An integer is read first which will be the number of nodes in the graph

Each subsequent row is read and each row has 2 integers which represent an edge from the first
vertex to the other

The output will be the out-neighbor list for all the vertices
The program will also output all the vertices in breadth first search order

Only integers will be read and the first integer which indicates the number of nodes will not be
greater than 100

High Level View:

The number of nodes where read and an out-neighbor list was created

Then starting from vertex 0, the program marked all the out-neighbors and enqueue them

When a value was dequeued, all of its non marked out-neighbors are then marked and enqueued
The program terminates once the queue is empty

Implementations/Specifications:

A circular linked list class was implemented to represent a circular queue where each node was
a dynamically allocated struct

The out-neighbor list was implemented using an array of structs in which there was a pointer
field that pointed to the next vertex in the out-neighbor list

There was a constructor and two methods that were used to manipulate the queue, they were
enqueue and dequeue and there was a print method which outputted the out-neighbor list

The enqueue and dequeue methods maintained a dummy node for the circular queue
implementation to avoid having to deal with an extra tail pointer

The control of how values where enqueued and dequeued and the overall implementation of
breadth first search were all done in int main

Compiling/MakeFile/Execution:

No make file was used in this assignment
The GNU Linux Compiler was used to compile the program using g++ bfs.cpp

The output file generated by default was a.out and ./a.out < input.txt where input.txt is the input
file which was read by using linux redirection



