Computer Science 302 Fall 2010 (Practice) Third Examination, November 23, 2010

Revised November 18, 2010

Name:
The entire examination is 280 points.
1. True or False. [5 points each]
(a) Using path compression and making sure to merge the small tree with the large tree, operations for union/find may be done in $O(n)$ time, given that you start with n singleton trees.
(b) If a planar graph G (a graph is called <i>planar</i> if it can be embedded in a plane with no edge crossings) has n vertices, then G has $O(n)$ edges.
(c) Kruskal's algorithm is a greedy algorithm.
(d) Greedy algorithms are used because they're quick and easy to write, but they're new optimal.
(e) If a hash table has size $2n$ but holds only n items, and if the hash function is pseudo-randor then, with very high probability, there will be no collision.
2. Fill in the blanks (5 points each blank).
(a) A graph with 60 nodes has no more than edges.
(b) An acyclic connected graph with n nodes has $___$ edges.
(c) A strongly connected directed graph with n nodes must have at least $___$ edges.
(d) If a hash function is used to build a search structure, not a perfect hash table, what properties,

3. Give the best possible asymptotic time complexity of each of these code fragments.

(a) [10 points]

```
int m = n*n;
while (m > 0)
    {
     cout << "hello world" << endl;
     m = m/2;
}</pre>
```

(b) [10 points]

```
int m = n;
while (m > 0)
    {
    for ( int i = 0; i < m ; i++ )
        cout << "hello world" << endl;
    m = m/2;
}</pre>
```

4. [20 points] Write an appropriate loop invariant for the **inner** loop in this function.

```
void bubblesort(vector<int> & x)
{
  for(int i = 0; i < x.size; i++)
   for(int j = x.size-1; j > i; j--)
    if(x[j] < x[j-1])
    {
     int temp = x[j];
     x[j] = x[j-1];
     x[j-1] = temp;
  }
}</pre>
```

- 5. [20 points] Write a complete C++ program that:
 - (a) prompts the user to enter three integers,
 - (b) reads three integers from the keyboard,
 - (c) writes the largest of those three numbers to the screen.

6. [30 points]

Consider the weighted directed graph represented by the matrix below. A blank entry indicates no edge.

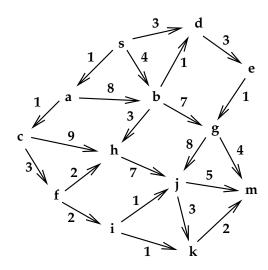
- (a) Write the nodes in a topological order.
- (b) Solve the single source minimum weight path problem for this graph, with start node A. Your answer should consist of two arrays: minimum weights and back pointers.

	A	G	Н	I	L	M	О	R	T
A		-1			7		1		
G						7		3	
H						8			
Ι			-3						
L				2				6	
M									
0			4						2
R									9
T						1			

	5	

7. [25 points] Explain how you would use a search structure to implement a sparse array. The space below

should be sufficient, but you can write on the back of this page if necessary.


8. [30 points] In FORTRAN, all matrices (*i.e.*, arrays) are stored in column-major order, and indices always start at 1 (not 0, as with C++). A FORTRAN program contains a declaration for a $10 \times 8 \times 20$ 3-dimensional matrix of type FLOAT, called A. Each variable of type FLOAT uses two words (address locations).

The compiler allocates a block of space, starting with word 1025, for A. Where will the variable A(5,4,16) be stored? (FORTRAN uses parentheses instead of brackets to indicate array indices.)

	7	

9. [20 points] Explain when you could use the Floyd-Warshall algorith, and give pseudo-code.

10. [30 points] Walk through the steps of Dijkstra's algorithm to solve the single source minimum path problem for the graph shown below, where s is the start node.

11. [30 points] Some problem (or problems) on dynamic programming.