
Computer Science 302 Fall 2012 (Practice) Third Examination, November 20, 2012

Name:

The entire examination is 250 points.

1. True or False. [5 points each]

(a) If a planar graph G (a graph is called planar if it can be embedded in a plane with no edge

crossings) has n vertices, then G has O(n) edges.

(b) Kruskal’s algorithm is a greedy algorithm.

(c) Greedy algorithms are used because they’re quick and easy to write, but they’re never

optimal.

(d) If a hash table has size 2n but holds only n items, and if the hash function is pseudo-random,

then, with very high probability, there will be no collision.

2. Fill in the blanks (5 points each blank).

(a) A graph with 60 nodes has no more than edges.

(b) An acyclic connected graph with n nodes has edges.

(c) A strongly connected directed graph with n nodes must have at least edges.

3. Give the best possible asymptotic time complexity of each of these code fragments.

(a) [10 points]

int m = n*n;

while (m > 0)

{

cout << "hello world" << endl;

m = m/2;

}

(b) [10 points]

int m = n;

while (m > 0)

{

for (int i = 0; i < m ; i++)

cout << "hello world" << endl;

m = m/2;

}

1

(c) [10 points]

int m = n;

while (m > 1)

{

m = sqrt(m);

cout << "hello world" << endl;

}

(Assume that the square root function truncates down to an integer; for example, the value of

sqrt(14) is 3.)

4. [20 points] Write an appropriate loop invariant for the inner loop in this function.

void bubblesort(vector<int> & x)

{

for(int i = 0; i < x.size; i++)

for(int j = x.size-1; j > i; j--)

if(x[j] < x[j-1])

{

int temp = x[j];

x[j] = x[j-1];

x[j-1] = temp;

}

}

5. [20 points] Find a minimum spanning tree for the weighted graph shown below.

2

6. [30 points]

Consider the weighted directed graph represented by the matrix below. A blank entry indicates no edge.

(a) Write the nodes in a topological order.

(b) Solve the single source minimum weight path problem for this graph, with start node A. Your

answer should consist of two arrays: minimum weights and back pointers.

A G H I L M O R T

A −1 7 1

G 7 3

H 8

I −3

L 2 6

M

O 4 2

R 9

T 1

7. [25 points] Explain how you would use a search structure to implement a sparse array.

8. [30 points] In FORTRAN, all matrices (i.e., arrays) are stored in column-major order, and indices

always start at 1 (not 0, as with C++). A FORTRAN program contains a declaration for a 10× 8× 20

3-dimensional matrix of type FLOAT, called A. Each variable of type FLOAT uses two words (address

locations).

The compiler allocates a block of space, starting with word 1025, for A. Where will the variable A(5,4,16)

be stored? (FORTRAN uses parentheses instead of brackets to indicate array indices.)

9. [30 points] In pseudocode, or C++ code if you prefer, write code for the Bellman-Ford algorithm on a

graph of n nodes, whose names are 1, 2, . . . n.

You are given a two dimensional array W , where W (i, j) is the weight of the edge from Node i to Node

j. If W [i, j] = ∞, there is no edge from i to j.

Do not write code for reading W ; just assume that it’s there as a global variable.

The output of your code will be a one-dimensional array V , where V [i] is the minimum weight of any

path from 1 to i, as well as a one-dimensional back pointer array B, where B[i] is the next-to-the-last

node of a least weight path from 1 to i.

B[1] should be undefined for all i, and B[i] should be undefined if V [i] = ∞, that is, if there is no path

from 1 to i. Use the value ∞ for any undefined entry of B.

You may assume that there are no negative weight cycles.

Do not write declarations for V and B; just assume that they are declared outside your procedure. Also,

do not write code to print out the values of those two arrays; simply assume that using the information

you compute is someone else’s job.

3

10. [30 points] In pseudocode, or C++ code if you prefer, write code for the Floyd-Warshall algorithm. on

a graph of n nodes, whose names are 1, 2, . . . n.

You are given a two dimensional array W , where W [i, j] is the weight of the edge from Node i to Node

j. If W [i, j] = ∞, there is no edge from i to j.

Do not write code for reading W ; just assume that it’s there as a global variable.

The output of your code will be a two-dimensional array V , where V [i, j] is the minimum weight of any

path from i to j, as well as a two-dimensional forward pointer array F , where F [i, j] is the second node

of a least weight path from i to j.

F [i, i] should be undefined for all i, and F [i, j] should be undefined if V [i, j] = ∞. Use the value ∞ for

any undefined entry of F .

You may assume that there are no negative weight cycles.

Do not write declarations for V and F ; just assume that they are declared outside your procedure. Also,

do not write code to print out the values of those two arrays; simply assume that using the information

you compute is someone else’s job.

4

