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Assignment 9: Due April 23, 2018

The Collatz Conjecture. For any positive integer n, let f(n) =

{

n/2 if n is even

3n+ 1 if n is odd
. The conjecture is

that, if we start with any positive integer, and repeatedly apply f , we will eventually reach 1. For example,

the Collatz sequence of 5 is 5, 16, 8, 4, 2, 1, while the Collatz sequence of 9 is 9, 28, 14, 7, 22, 11, 34, 17, 52,

26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1.

We define f∗(n) to be the number of times we need to apply f to reach 1, starting from n. Thus, for example,

f∗(5) = 5, and f∗(9) = 19. If we never reach 1, we define f∗(n) = ∞. However, in all known cases, f∗(n) is

finite.

Your project is to write a program that builds a sparse array, implemented using a search structure, which

holds the values of f∗(n) for all n up to 10, and for all other numbers which appear in the Collatz sequences

of those numbers. If you used an ordinary array, it would have to have size 52 for N = 10, 9232 for N = 100,

and 250504 for N = 1000. What a waste of space!

The function f∗(n), also called the total stopping time of n, can be defined by the following recurrence:

f∗(n) =

{

0 if n = 1

1 + f∗(f(n)) otherwise

Your search structure holds ordered pairs of the (n, f∗(n)), where n is the key. Fetch(n) is executed by

searching the structure. When you find the pair (n, V ), you know that f∗(n) = V .

Do the following steps. For the first run, N = 10.

1. Initialize your search structure as empty, and then insert the pair (1, 0), since f∗(1) = 0.

2. If you execute fetch(n) for any n, the value of f∗(n) might already have been computed, in which case

the pair (n, f∗(n)) will already be in the search structure.

3. If f∗(n) has not been computed, you must first calculate it, then insert it. You first compute m = f(n).

You then obtain the value of f∗(m) by executing fetch. You then let f∗(n) = 1 + f∗(n), then insert the

pair (n, f∗(n) into the search structure.

4. Of course, f∗(m) might not have already been computed, in which case you must recursively execute

the steps 2. and 3. for m.

5. Your output consists of the list of values of f∗(n) for n = 1, 2, . . . N . I also printed a message each time

a new memo was inserted into the search structure, other than the initial memo.

6. Run the program for N = 10 and then for N = 100. Print out the number of entries in the search

structure.

Refer to the Wikipedia page: https://en.wikipedia.org/wiki/Collatz_conjecture There are other

pages on the internet that deal with the same problem.



I am not telling you what to use for a search structure, but I used a binary search tree. Here is my binary

search tree for N = 10. I did not try to maintain balance, so the tree looks rather lopsided.
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My output for N = 10 is as follows.

f*(1) = 0

inserting f*(2) = 1

f*(2) = 1

inserting f*(4) = 2

inserting f*(8) = 3

inserting f*(16) = 4

inserting f*(5) = 5

inserting f*(10) = 6

inserting f*(3) = 7

f*(3) = 7

f*(4) = 2

f*(5) = 5

inserting f*(6) = 8

f*(6) = 8

inserting f*(20) = 7

inserting f*(40) = 8

inserting f*(13) = 9

inserting f*(26) = 10

inserting f*(52) = 11

inserting f*(17) = 12

inserting f*(34) = 13

inserting f*(11) = 14

inserting f*(22) = 15

inserting f*(7) = 16

f*(7) = 16

f*(8) = 3

inserting f*(14) = 17

inserting f*(28) = 18

inserting f*(9) = 19

f*(9) = 19

f*(10) = 6

There are 22 memos Tree height = 9
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