
University of Nevada, Las Vegas Computer Science 302 Spring 2018

Assignment 9: Due April 23, 2018

The Collatz Conjecture. For any positive integer n, let f(n) =

{

n/2 if n is even

3n+ 1 if n is odd
. The conjecture is

that, if we start with any positive integer, and repeatedly apply f , we will eventually reach 1. For example,

the Collatz sequence of 5 is 5, 16, 8, 4, 2, 1, while the Collatz sequence of 9 is 9, 28, 14, 7, 22, 11, 34, 17, 52,

26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1.

We define f∗(n) to be the number of times we need to apply f to reach 1, starting from n. Thus, for example,

f∗(5) = 5, and f∗(9) = 19. If we never reach 1, we define f∗(n) = ∞. However, in all known cases, f∗(n) is

finite.

Your project is to write a program that builds a sparse array, implemented using a search structure, which

holds the values of f∗(n) for all n up to 10, and for all other numbers which appear in the Collatz sequences

of those numbers. If you used an ordinary array, it would have to have size 52 for N = 10, 9232 for N = 100,

and 250504 for N = 1000. What a waste of space!

The function f∗(n), also called the total stopping time of n, can be defined by the following recurrence:

f∗(n) =

{

0 if n = 1

1 + f∗(f(n)) otherwise

Your search structure holds ordered pairs of the (n, f∗(n)), where n is the key. Fetch(n) is executed by

searching the structure. When you find the pair (n, V ), you know that f∗(n) = V .

Do the following steps. For the first run, N = 10.

1. Initialize your search structure as empty, and then insert the pair (1, 0), since f∗(1) = 0.

2. If you execute fetch(n) for any n, the value of f∗(n) might already have been computed, in which case

the pair (n, f∗(n)) will already be in the search structure.

3. If f∗(n) has not been computed, you must first calculate it, then insert it. You first compute m = f(n).

You then obtain the value of f∗(m) by executing fetch. You then let f∗(n) = 1 + f∗(n), then insert the

pair (n, f∗(n) into the search structure.

4. Of course, f∗(m) might not have already been computed, in which case you must recursively execute

the steps 2. and 3. for m.

5. Your output consists of the list of values of f∗(n) for n = 1, 2, . . . N . I also printed a message each time

a new memo was inserted into the search structure, other than the initial memo.

6. Run the program for N = 10 and then for N = 100. Print out the number of entries in the search

structure.

Refer to the Wikipedia page: https://en.wikipedia.org/wiki/Collatz_conjecture There are other

pages on the internet that deal with the same problem.



I am not telling you what to use for a search structure, but I used a binary search tree. Here is my binary

search tree for N = 10. I did not try to maintain balance, so the tree looks rather lopsided.

5,5

6,8

7,16

1,0

2,1

4,2

3,7 8,3

16,4

10,6

13,9

11,14 14,17

17,12 40,8

26,10 52,11

22,15 34,13

28,18

20,7

9,19

My output for N = 10 is as follows.

f*(1) = 0

inserting f*(2) = 1

f*(2) = 1

inserting f*(4) = 2

inserting f*(8) = 3

inserting f*(16) = 4

inserting f*(5) = 5

inserting f*(10) = 6

inserting f*(3) = 7

f*(3) = 7

f*(4) = 2

f*(5) = 5

inserting f*(6) = 8

f*(6) = 8

inserting f*(20) = 7

inserting f*(40) = 8

inserting f*(13) = 9

inserting f*(26) = 10

inserting f*(52) = 11

inserting f*(17) = 12

inserting f*(34) = 13

inserting f*(11) = 14

inserting f*(22) = 15

inserting f*(7) = 16

f*(7) = 16

f*(8) = 3

inserting f*(14) = 17

inserting f*(28) = 18

inserting f*(9) = 19

f*(9) = 19

f*(10) = 6

There are 22 memos Tree height = 9

2


