

Extra Difficulty Assignment: Rice Numbers

Recall that languages are equivalent to 0/1 problems, and we'll use those terms interchangeably.

We use the following notation.

\mathbb{N} = the natural numbers (the positive integers).

\mathbb{Z} = the integers.

\mathbb{Q} = the rational numbers.

\mathbb{R} = the real numbers.

\mathbb{I} = the unit interval = $\{x \in \mathbb{R} : 0 \leq x \leq 1\}$

A *fraction* is a string of the form “ $|n|_2/|m|_2$ ” where $n, m \in \mathbb{Z}$ and $m \neq 0$. The *value* of that fraction is n/m .

1. What is a *diadic* rational number?
2. For any alphabet Σ , every language over Σ has a *Rice number* in the unit interval. (The alphabet must be specified.) Give a definition of the Rice number of a language. (Henceforth, we assume that all languages are over Σ .)
3. What is the Rice number of Σ^* ? What is the Rice number of the empty language?
4. Prove that a language is recursive (decidable) if and only if its Rice number is a recursive real number.
5. Is it possible for two different languages to have the same Rice number? Hint: the word “diadic” should appear in your explanation.
6. Prove that if $x \in \mathbb{I}$ then x is the Rice number of some language.
7. Suppose x and y are the Rice numbers of languages X and Y , and that Y is the complement of X , that is, $X \cup Y = \Sigma^*$ and $X \cap Y = \emptyset$. Prove that $x + y = 1$.
8. We define a sequence $\sigma = x_1, x_2, \dots$ of strings to be *recursive* if there is some machine which writes σ . (If the sequence is infinite, the machine will never halt.)
9. Prove that there is some recursive sequence of fractions whose sequence of values converges to a real number which is not recursive.