True/False Questions

True or False. T = true, F = false, and O = open, meaning that the answer is not known science at this time. In the questions below,

- (i) _____ Let L be the language over $\{a, b, c\}$ consisting of all strings which have more a's than b's and more b's than c's. There is some PDA that accepts L.
- (ii) _____ The language $\{a^n b^n \mid n \ge 0\}$ is context-free.
- (iii) _____ The language $\{a^n b^n c^n \mid n \ge 0\}$ is context-free.
- (iv) _____ The language $\{a^i b^j c^k \mid j = i + k\}$ is context-free.
- (v) _____ The intersection of any two regular languages is regular.
- (vi) _____ The intersection of any regular language with any context-free language is context-free.
- (vii) _____ The intersection of any two context-free languages is context-free.
- (viii) $___$ If L is a context-free language over an alphabet with just one symbol, then L is regular.
- (ix) _____ There is a deterministic parser for any context-free grammar.
- (x) _____ The set of strings that your high school algebra teacher would accept as legitimate expressions is a context-free language.
- (xi) _____ Every language accepted by a non-deterministic machine is accepted by some deterministic machine.
- (xii) _____ The problem of whether a given string is generated by a given context-free grammar is decidable.
- (xiii) _____ If G is a context-free grammar, the question of whether $L(G) = \emptyset$ is decidable.
- (xiv) _____ Every language generated by an unambiguous context-free grammar is accepted by some DPDA.
- (xv) _____ The language $\{a^n b^n c^n d^n \mid n \ge 0\}$ is recursive.
- (xvi) _____ The language $\{a^n b^n c^n \mid n \ge 0\}$ is in the class \mathcal{P} -TIME.
- (xvii) _____ There exists a polynomial time algorithm which finds the factors of any positive integer, where the input is given as a binary numeral.
- (xviii) $_$ Every undecidable problem is \mathcal{NP} -complete.
- (xix) _____ Every problem that can be mathematically defined has an algorithmic solution.
- (xx) _____ The intersection of two undecidable languages is always undecidable.
- (xxi) $_$ Every \mathcal{NP} language is decidable.
- (xxii) _____ The intersection of two \mathcal{NP} languages must be \mathcal{NP} .
- (xxiii) _____ If L_1 and L_2 are \mathcal{NP} -complete languages and $L_1 \cap L_2$ is not empty, then $L_1 \cap L_2$ must be \mathcal{NP} -complete.

- (xxiv) ------ There exists a \mathcal{P} -TIME algorithm which finds a maximum independent set in any graph.
- (xxv) _____ There exists a \mathcal{P} -TIME algorithm which finds a maximum independent set in any **acyclic** graph.
- (xxvi) $\ldots \mathcal{NC} = \mathcal{P}.$
- (xxvii) $\ldots \mathcal{P} = \mathcal{NP}.$
- (xxviii) $\ldots \mathcal{NP} = \mathcal{P}$ -Space
- (xxix) \mathcal{P} -SPACE = EXP-TIME
- (xxx) EXP-TIME = EXP-SPACE
- (xxxi) \ldots EXP-TIME = \mathcal{P} -TIME.
- (xxxii) $___$ EXP-SPACE = \mathcal{P} -SPACE.
- (xxxiii) _____ The traveling salesman problem (TSP) is known to be \mathcal{NP} -complete.
- (xxxiv) ------ The language consisting of all satisfiable Boolean expressions is known to be \mathcal{NP} -complete.
- (xxxv) _____ The Boolean Circuit Problem is in \mathcal{P} .
- (xxxvi) _____ The Boolean Circuit Problem is in \mathcal{NC} .
- (xxxvii) _____ If L_1 and L_2 are undecidable languages, there must be a recursive reduction of L_1 to L_2 .
- (xxxviii) $___$ 2-SAT is \mathcal{P} -TIME.
- (xxxix) $___$ 3-SAT is \mathcal{P} -TIME.
 - (xl) $_$ Primality is \mathcal{P} -TIME.
 - (xli) _____ There is a \mathcal{P} -TIME reduction of the halting problem to 3-SAT.
 - (xlii) $_$ Every context-free language is in \mathcal{P} .
 - (xliii) $_$ Every context-free language is in \mathcal{NC} .
 - (xliv) $_$ Addition of binary numerals is in \mathcal{NC} .
 - (xlv) $_$ Every context-sensitive language is in \mathcal{P} .
 - (xlvi) _____ Every language generated by a general grammar is recursive.
 - (xlvii) _____ The problem of whether two given context-free grammars generate the same language is decidable.
- (xlviii) _____ The language of all fractions (using base 10 numeration) whose values are less than π is decidable. (A *fraction* is a string. "314/100" is in the language, but "22/7" is not.)
- (xlix) _____ Any context-free language over the unary alphabet is regular.
 - (l) _____ Any context-sensitive language over the unary alphabet is regular.
 - (li) _____ Any recursive language over the unary alphabet is regular.

- (lii) _____ There exists a polynomial time algorithm which finds the factors of any positive integer, where the input is given as a unary numeral.
- (liii) ______ For any two languages L_1 and L_2 , if L_1 is undecidable and there is a recursive reduction of L_1 to L_2 , then L_2 must be undecidable.
- (liv) ______ For any two languages L_1 and L_2 , if L_2 is undecidable and there is a recursive reduction of L_1 to L_2 , then L_1 must be undecidable.
- (lv) _____ If P is a mathematical proposition that can be written using a string of length n, and P has a proof, then P must have a proof whose length is $O(2^{2^n})$.
- (lvi) _____ If L is any \mathcal{NP} language, there must be a \mathcal{P} -TIME reduction of L to the partition problem.
- (lvii) _____ Every bounded function is recursive.
- (lviii) _____ If L is \mathcal{NP} and also co- \mathcal{NP} , then L must be \mathcal{P} .
- (lix) _____ If L is \mathcal{RE} and also co- \mathcal{RE} , then L must be decidable.
- (lx) _____ Every language is enumerable.
- (lxi) \ldots If a language L is undecidable, then there can be no machine that enumerates L.
- (lxii) _____ There exists a mathematical proposition which is true, but can be neither proved nor disproved.
- (lxiii) _____ There is a non-recursive function which grows faster than any recursive function.
- (lxiv) _____ There exists a machine that runs forever and outputs the string of decimal digits of π (the well-known ratio of the circumference of a circle to its diameter).
- (lxv) _____ For every real number x, there exists a machine that runs forever and outputs the string of decimal digits of x.
- (lxvi) _____ Rush Hour, the puzzle sold in game stores everywhere, generalized to a board of arbitrary size, is known to be \mathcal{NP} -complete.
- (lxvii) _____ There is a polynomial time algorithm which determines whether any two regular expressions are equivalent.
- (lxviii) ______ If two regular expressions are equivalent, there is a polynomial time proof that they are equivalent.
- (lxix) _____ Every subset of a regular language is regular.
- (lxx) _____ Every subset of any enumerable set is enumerable.
- (lxxi) _____ The computer language Pascal has Turing power.
- (lxxii) Computing the square of an integer written in binary notation is an \mathcal{NC} function.
- (lxxiii) _____ If L is any \mathcal{P} -TIME language, there is an \mathcal{NC} reduction of L to the Boolean circuit problem.
- (lxxiv) _____ If an abstract Pascal machine can perform a computation in polynomial time, there must be some Turing machine that can perform the same computation in polynomial time.

- (lxxv) _____ The binary integer factorization problem is $co-\mathcal{NP}$.
- (lxxvi) _____ There is a polynomial time reduction of the subset sum problem to the binary numeral factorization problem.
- (lxxvii) _____ There is a polynomial time reduction of the binary numeral factorization problem to the subset sum problem.
- (lxxviii) _____ For any real number x, the set of fractions whose values are less than x is \mathcal{RE} .
- (lxxix) ------ For any recursive real number x, the set of fractions whose values are less than x is recursive.
- (lxxx) _____ The union of any two deterministic context-free languages must be a DCFL.
- (lxxxi) _____ The intersection of any two deterministic context-free languages must be a DCFL.
- (lxxxii) _____ The complement of any DCFL must be a DCFL.
- (lxxxiii) _____ The membership problem for a DCFL is in the class \mathcal{P} -TIME.
- (lxxxiv) _____ Every finite language is decidable.
- (lxxxv) _____ Every context-free language is in Nick's class.
- (lxxxvi) $___$ 2SAT is known to be \mathcal{NP} -complete.
- (lxxxvii) $_$ The complement of any \mathcal{P} -TIME language is \mathcal{P} -TIME.
- (lxxxviii) _____ The complement of any \mathcal{P} -space language is \mathcal{P} -space.

The *jigsaw puzzle problem* is, given a set of various polygons, and given a rectangular table, is it possible to assemble those polygons to exactly cover the table?

The *furniture mover's problem* is, given a room with a door, and given a set of objects outside the room, it is possible to move all the objects into the room through the door?

- (lxxxix) \ldots The jigsaw puzzle problem is known to be \mathcal{NP} complete.
 - (xc) _____ The jigsaw puzzle problem is known to be \mathcal{P} -SPACE complete.
 - (xci) _____ The furniture mover's problem is known to be \mathcal{NP} complete.
 - (xcii) _____ The furniture mover's problem is known to be \mathcal{P} -space complete.
 - (xciii) _____ The complement of any recursive language is recursive.
 - (xciv) _____ The complement of any undecidable language is undecidable.
 - (xcv) Every undecidable language is either \mathcal{RE} or $co-\mathcal{RE}$.
 - (xcvi) $___$ For any infinite countable sets A and B, there is a 1-1 correspondence between A and B.
 - (xcvii) $___$ A language L is recursively enumerable if and only if there is a machine which accepts L.
- (xcviii) $_$ Every \mathcal{NP} language is reducible to the independent set problem in polynomial time.

- (xcix) _____ If a Boolean expression is satisfiable, there is a polynomial time proof that it is satisfiable.
 - (c) _____ The general sliding block problem is \mathcal{P} -SPACE complete.
 - (ci) $_$ The regular expression equivalence problem is \mathcal{P} -SPACE complete.
 - (cii) _____ The context-sensitive membership problem is \mathcal{P} -SPACE complete.
- (ciii) _____ The Post correspondence problem is undecidable.
- (civ) _____ The set of real numbers is countable.
- (cv) _____ The set of recursive real numbers is countable.
- (cvi) _____ A finite set has only finitely many subsets.
- (cvii) _____ A countable set has only countably many subsets.
- (cviii) _____ Suppose some machine writes a convergent sequence of rational numbers x_1, x_2, \ldots Then $\lim_{i\to\infty} x_i$ must be a recursive real number.
- (cix) _____ There are infinitely many prime integers.
- (cx) _____ There are infinitely many Mersenne primes. (Look it up.)