## CS 456/656 Third Examination November 20, 2024

The entire examination is 330 points.

- 1. True/False/Open
  - (i) [5 points]  $\mathbf{T}$  Every context-free language is  $\mathcal{NC}$ .
  - (ii) [5 points] **T** Every  $\mathcal{P}$ -TIME problem is  $\mathcal{NC}$ -reducible to the Boolean Circuit problem.
  - (iii) [5 points] **T** If x is a recursive real number, the set of fractions whose values are less than x is a decidable language.
  - (iv) [5 points] **T** The ancient Greek mathematicians believed that all real numbers were rational, until one of them proved that irrational numbers exist.
  - (v) [5 points] **T** There are infinitely many prime integers.
  - (vi) [5 points]  $\mathbf{O} \ \mathcal{NP} = \mathcal{P}$ -SPACE.
  - (vii) [5 points]  $\mathbf{O} \ \mathcal{NC} = \mathcal{P}$ -TIME.
  - (viii) [5 points]  $\mathbf{T}$  Matrix multiplication is  $\mathcal{NC}$ .
  - (ix) [5 points] **T** The jigsaw problem is  $\mathcal{NP}$ -complete.
  - (x) [5 points] **O** The furniture mover's problem is  $\mathcal{NP}$ -complete.
  - (xi) [5 points] **T** Every context-free language is generated by some CNF (Chomsky Normal Form) grammar.
  - (xii) [5 points]  $\mathbf{F} \mathcal{P}$ -TIME = EXP-TIME.
  - (xiii) [5 points] **O** The Boolean Circuit problem is inherently sequential.
  - (xiv) [5 points] **F** Every decidable language is context-sensitive.
  - (xv) [5 points] **T** Every context-sensitive language is decidable.
  - (xvi) [5 points] **F** Given any uncountable set S, there is a 1-1 correspondence between S and the set of real numbers.
  - (xvii) [5 points]  $\mathbf{F}$  The asymptotic time complexity of a language (problem) is never greater than its asymptotic space complexity.
  - (xviii) [5 points] **T** The halting problem is accepted by some machine.
  - (xix) [5 points] **T** The set of all strings of the form  $\langle G_1 \rangle \langle G_2 \rangle$  such that  $G_1$  and  $G_2$  are context-free grammars which are **not** equivalent is recursively enumerable.
  - (xx) [5 points] **F** If a regular language is accepted by an NFA with n states, it is accepted by a DFA with n states.

2. [20 points] What does it mean to say that a set X is countable?

There is a 1-1 correspondence betwee X and the natural numbers.

3. [20 points] State the pumping lemma for context-free languages.

For any context-free language LThere exists a positive number p such that For any  $w \in L$  of length at least pThere exist strings u, v, x, y, z such that the following hold:

- 1. w = uvxyz
- 2.  $|vxy| \leq p$
- 3. v and y are not both empty
- 4. For any  $i \ge 0$ ,  $uv^i xy^i z \in L$
- 4. [20 points] Give an example of a language L which is not CF, but whose complement is context-free.

 $\{a^n b^n c^n : n \ge 0\}$ 

5. [20 points] Sketch a DPDA that accepts the language  $\{a^n b^n : n \ge 0\}$ 



6. [10 points] Give a context-sensitive language that is not context-free.

 $\{a^n b^n c^n : n \ge 0\}$ 

7. [20 points] Sketch a PDA (not a DPDA) which accepts the palindromic language generated by the following CF grammar:



8. [20 points] Consider the context-free grammar G below, where S is the only variable. Prove that G is ambiguous by given two different parse trees for the string *iiaea* using G. Label the internal nodes of each parse tree with production numbers.



9. [20 points] Prove that  $\sqrt{2}$  is irrational.

By contradiction. Assume  $\sqrt{2}$  is rational. Then it is the value of a fraction  $\frac{p}{q}$ , where p and q have no common divisor greater than 1.

$$\sqrt{2} = \frac{p}{q}$$

$$2 = \frac{p^2}{q^2}$$

$$2q^2 = p^2 \text{ hence } p^2 \text{ is even, hence } p \text{ is even}$$

$$p = 2k \text{ for some integer } k$$

$$p^2 = 4k^2$$

$$2q^2 = 4k^2$$

$$q^2 = 2k^2 \text{ hence } q^2 \text{ is even, hence } q \text{ is even}$$

p and q have the common divisor 2, contradiction. We conclude that  $\sqrt{2}$  is irrational.

10. [20 points] Prove that every language which is enumerated in canonical order by some machine is decidable.

The following program decides L. Let  $w_1, w_2, \ldots$  be the canonical order of L, which we can use as an input to our program.

Read wFor all  $w_i$  in canonical order If  $w = w_i$  halt and accept If  $w < w_i$  (in the canonical order) halt and reject

11. [20 points] Give a polynomial time reduction from the subset sum problem to the partition problem. The reduction maps an instance  $(x_1, x_2, \ldots x_n, K)$  of the subset sum problem to the instance  $(x_1, x_2, \ldots x_n, K)$  of the partition problem, where  $S = \sum_{i=1}^n x_i$ .

12. [20 points] Prove that HALT is undecidable.

By contradiction. Assume HALT is decidable. Let P be the following program Read a machine description  $\langle M \rangle$ . If M halts with input  $\langle M \rangle$ , enter an infinite loop. Else halt.

The input to P could be  $\langle P \rangle$ . If so, does it halt?

If P halts with input  $\langle P \rangle$ , then, with input  $\langle P \rangle$ , the code will cause P to enter an infinite loop, that is, not halt, contradiction.

Alternatively, if P does not halt with input  $\langle P \rangle$ , then, with intput  $\langle P \rangle$ , the code will cause P to halt, contradiction.

In either case, we have a contradiction. We conclude that HALT is not decidable.

13. [20 points] Prove that every recursively enumerable language is accepted by some machine.

Let  $w_1, w_2...$  be an enumeration of L written by some machine. The following program accepts L.

Read wFor i from 1 to  $\infty$ If  $w = w_i$  halt and accept

14. This problem is worth more than just points.

Prove that 2-SAT is  $\mathcal{P}$ -TIME. I never proved this in class, so it's a real challenge. Can you do it? Don't try it until you finish all other problems on the exam!