University of Nevada, Las Vegas Computer Science 456/656 Fall 2024

Assignment 2: Due Saturday September 13, 2025, 11:59:59 PM (midnight)

As usual, any student who finds a typo or error gains respect.

Name:	
Traffie	

You are permitted to work in groups, get help from others, read books, and use the internet. You will receive a message from the graduate assistant, Sabrina Wallace at sabrina.wallace@unlv.edu telling you how to turn in assignments.

1. Identify which machine accepts the language defined by each regular expression.

(i)
$$a^* + b^*$$

(v)
$$a(aa + b)^*$$

(ii)
$$\lambda$$

(vi)
$$a^*b^*$$

(iii)
$$a^*$$

(vii)
$$(a + b)^*$$

(viii)
$$(ab)^*$$

- 2. True or False.
 - (i) _____ If L is any language, L + L = L
 - (ii) _____ If L is any language, $L \cap L = L$
 - (iii) _____ If L is any language, $\{\lambda\} \in L^*$.
- 4. True/False. If the answer is not known to science at this time, enter "O" for Open.
 - (i) ----- co- $\mathcal{P} = \mathcal{P}$.

- (ii) ----- $\operatorname{co-}\mathcal{NP} = \mathcal{NP}$.
- (iii) _____ co- \mathcal{P} -space = \mathcal{P} -space.
- (iv) _____ Block placement problems are \mathcal{NP} .
- (v) _____ Sliding block problems are \mathcal{P} -SPACE.
- (vi) ____ \mathcal{P} -SPACE = \mathcal{NP}
- (vii) _____ Regular expression equivalence is \mathcal{P} .
- (viii) _____ Regular expression equivalence is decidable.
- (ix) _____ Context-free grammar equivalence is decidable.
- (x) _____ Every regular language is context-free.
- (xi) _____ The language C++ is context-free.
- (xii) _____ The intersection of any two context-free languages is context-free.
- (xiii) _____ The complement of any context-free language is context-free.
- (xiv) _____ Every language is countable.
- (xv) _____ For any real number x, there is a program that prints the decimal expansion of x. For any real number x, there is a machine that decides whether any given fraction is less than x.
- (xvi) _____ There are only countably many decidable binary languages.
- (xvii) _____ Given a regular grammar G with n variables, there exists an NFA with n states that accepts L(G).
- (xviii) _____ Given an integer n written in binary notation, it is possible to find the prime factors of n in polynomial time.
- (xix) _____ Given an integer n written in binary notation, it is possible to decide whether n is prime in polynomial time.
- (xx) _____ Any language generated by a grammar is decidable.
- (xxi) _____ The complement of any decidable language is decidable.
- (xxii) _____ The union of any two decidable languages is decidable.
- (xxiii) _____ The complement of any undecidable language is undecidable.
- (xxiv) _____ The union of any two undecidable languages is undecidable.
- (xxv) _____ Every context-free language is accepted by some DPDA.
- (xxvi) _____ Any language consisting of all decimal numerals of an arithmetic sequence (for example: $L = \{\langle 5+8n \rangle : n \geq 0\} = \{5,13,21,29,37,45\ldots\}$) is regular. Note: the members of L are numerals, not numbers.
- (xxvii) _____ Let L_1 be a regular binary language. Let L_2 be the language of all strings obtained from members of L_1 by substituting ab for 0 and c for 1. Then L_2 must be regular. For example, if $L_1 = \{0, 10, 10011\}$ then $L_2 = \{ab, cab, cababcc\}$.
- (xxviii) $_$ ____ DFA equivalence is \mathcal{P} -TIME.

(xxix) \longrightarrow NFA equivalence is \mathcal{P} -TIME.

(xxx) _____ NFA equivalence is $\mathcal{NP}\textsc{-time}$.

(xxxi) _____ Regular expression equivalence is $\mathcal{NP}\textsc{-time}$.

(xxxii) _____ Regular expression equivalence is \mathcal{P} -SPACE.

5. Any NFA with n states is equivalent to some DFA with at most 2^n states, counting the dead state. Draw a minimal DFA equivalent to the following three state NFA.

6. Match each PDA with either the desciption or the CF grammar of Problem 7 below.

- 7. Here are the language descriptions for Problem 6.
 - (a) $\{a^n b^n : n \ge 0\}$
 - (b) $\{w \in \{a,b\}^* : \#_a(w) = \#_b(w)\}$, that is, all strings over $\{a,b\}$ with equal numbers of each symbol,
 - (c) $w \in \{a, b\}^* : 2\#_a(w) = \#_b(w)$.
 - (d) Generated by the CF grammar:
 - 1. $S \rightarrow aSbS$
 - $2~S \to \lambda$
 - (e) Generated by the CF grammar:
 - $1.\ S \to aSb$
 - $2.\ S \to c$
 - (f) Palindromes over $\{a, b\}$.