University of Nevada, Las Vegas Computer Science 456/656 Fall 2025 Assignment 4: Due October 18, 2025, 11:59:59 PM

name:
You are permitted to work in groups, get help from others, read books, and use the internet. You we receive a message from the graduate assistant, Sabrina Wallace, telling you how to turn in the assignment
${\mathcal P}$ means ${\mathcal P}$ –TIME.
1. True/False. If the answer is not known to science at this time, enter "O" for Open.
(a) There are only countably many decidable binary languages.
(b) If a number x can be approximated to any desired accuracy by a computer, then x is recursive real number.
(c) If some machine can compute an increasing sequence of fractions which converges to then x must be a recursive real number. (The sequence can be infinite.)
2. State the pumping lemma for regular languages. If your answer contains all the right words, but n in the right order, you might get no credit.
3. Given languages L_1 and L_2 , exactly one of the following statements is correct. Which one?
(i) If there is an easy reduction from L_1 to L_2 and L_1 is hard, then L_2 must be hard.
(ii) If there is an easy reduction from L_1 to L_2 and L_2 is hard, then L_1 must be hard.
(iii) If there is an easy reduction from L_1 to L_2 and L_3 is easy, then L_2 must be easy.

(iv) If there is a hard reduction from L_1 to L_2 and L_2 is easy, then L_1 must be hard.

4.	4. Give a polynomial time reduction of subset sum to the partition problem.					

5. Give a polynomial time reduction of 3-SAT to the independent set problem.

6. Prove that the halting problem is undecidable.

For the following two problems, either take a course in music theory, or read the webpage https://www.math.uwaterloo.ca/~mrubinst/tuning/12.html.

7. Prove that $\log_2 3$ is irrational.

8. $\log_2 3$ is irrational, but is very close to the rational number 19/12, only about 1% off. Explain why this fact is important for Western music.¹

¹From the internet: "Western music may be defined as organized instrumentation and sound created and produced in Europe, the United States, and other societies established and shaped by European immigrants. This includes a wide assortment of musical genres, from classical music and jazz to rock and roll and country-western music."