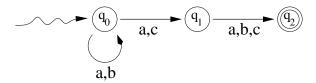
University of Nevada, Las Vegas Computer Science 456/656 Fall 2025 Assignment 6: Due November 8, 2025, 11:59:59 PM


Namo		
11ame	 	

You are permitted to work in groups, get help from others, read books, and use the internet. You will receive a message from the graduate assistant, Sabrina Wallace, telling you how to turn in the assignment.

There are problems in this homework that were on the second examination. I have concentrated on problems which many students did badly. They will likely be repeated in the next examination or the final examination.

 \mathcal{P} means \mathcal{P} -TIME.

- 1. True/False. If the answer is not known to science at this time, enter "O" for Open.
 - (a) $\mathcal{P} = \mathcal{NC}$
 - (b) _____ Given any \mathcal{P} -TIME problem P, there is a \mathcal{NC} reduction of P to the circuit value problem.
 - (c) _____ Every context-free language is \mathcal{NC} .
 - (d) _____ If a language L is generated by a general grammar, L must be decidable.
 - (e) _____ Every undecidable language is \mathcal{NP} -hard.
- 2. Draw a DFA equivalent to the following NFA.

3. Give a definition of the class \mathcal{P} -complete, and name a language in that class.

4.	Every language, or problem, falls into exactly one of these categories. For each of these languages or problems, write a letter indicating the correct category. You will need to search the internet for some of these. A Known to be \mathcal{NC} .					
	B Known to be \mathcal{P} -TIME, but not known to be \mathcal{NC} .					
	${f C}$ Known to be ${\cal NP},$ but not known to be ${\cal P}$ -TIME and not known to be ${\cal NP}$ -complete.					
	${f D}$ Known to be ${\mathcal {NP}}$ -complete.					
	E Known to be \mathcal{P} -SPACE but not known to be \mathcal{NP}					
	F Known to be EXP-TIME but not known to be \mathcal{P} -SPACE.					
	G Known to be EXP-SPACE but not known to be EXP-TIME.					
	H Known to be decidable, but not known to be EXP-SPACE.					
	I \mathcal{RE} but not decidable. K co- \mathcal{RE} but not decidable.					
	L Neither \mathcal{RE} nor co- \mathcal{RE} .					
	E Periodici Per del Co Per.					
	(i) The circuit value problem (CVP).					
	(ii) All C++ programs which halt with no input.					
	(iii) All base 10 numerals for perfect squares.					
	(iv) All configurations of RUSH HOUR from which it's possible to win.					
	(v) All satisfiable Boolean expressions.					
	(vi) Binary numerals for composite integers. (Composite means not prime.)					
	(vii) Decimal numerals for positive multiples of seven, such as 7, 14, 21, 28,					
	(viii) The furniture mover's problem. Given a room with a door and a set of furniture, is it possible to move all the furniture into the room through that door?					
	(ix) The set of all positions of Chinese GO, on a board of any size, from which white can win. (You will need to look this up.)					
	(x) The Dyck language.					
	(xi) The Jigsaw problem. (That is, given a finite set of two-dimensional pieces, can they be assembled into a rectangle, with no overlap and no spaces.)					
	(xii) Factorization of binary numerals.					
	(xiii) Boolean matrix multiplication.					
	(xiv) All C++ programs which do not halt if given themselves as input.					
	(xv) SAT.					
	(xvi) 3-SAT.					

(x	· ; ; ;)	2-SAT
1A	V 11 /	 2-0A1

- (xviii) _____ The Independent Set problem.
- (xix) _____ The Subset Sum Problem.
- (xx) _____ The Block sorting problem.
- (xxi) _____ The Sliding block problem.
- (xxii) _____ The Hamiltonian cyle problem.
- (xxiii) _____ The Traveling salesman problem.
- (xxiv) _____ The Graph isomorphism problem.
- (xxv) _____ The 3-coloring problem.
- (xxvi) _____ The 2-coloring problem.
- (xxvii) _____ TOT, the set of all machine descriptions $\langle M \rangle$ such that M halts on all possible inputs.
- 5. Fill in the ACTION table and GOTO table of an LALR parser or the following annotated context-free grammar. Your table should enforce the convention that both operations are left-associative, and that multiplication has higher precedence than subtraction, where x represents any identifier.
 - 1. $E \to E -_2 E_3$
 - 2. $E \rightarrow E *_4 E_5$
 - 3. $E \rightarrow x_6$

	x	_	*	\$ $\mid E \mid$
0				
1				
2				
3				
4				
5				
6				

6. Consider the following annotated CF grammar G.

1.
$$E \to E_{-2} E_3$$

2.
$$E \rightarrow -_4 E_5$$

3.
$$E \to E \wedge_6 E_7$$

4.
$$E \to (_8E_9)_{10}$$

5.
$$E \rightarrow x_{11}$$

Here is an LALR parser for G. Walk through the computation of the parser for the input string $x--(-x\wedge x\wedge -x)$

	x	_	\land	()	\$	
0	s11	s4		s8			1
1		s2	s6				
2	s11	s4		s8			3
3		r1	s6		r1	r1	
4	s11	s4		s8			5
5		r2	r2		r2	r2	
6	s11	s4		s8			7
7		r3	s6		r3	r3	
8	s11	s4		s8			9
9		s2	s6		s10		
10		r4	r4		r4	r4	
11		r5	r5		r5	r5	

7.	Let N be a large integer, and $w = \langle N \rangle$ its binary numeral. Let $n = w $. Explain how $O(n)$ parallel processors can decide, in $O(\log n)$ time, whether N is divisible by 3.
	Example: in this case, N is a divisible by 3. $101111111110000111010111110011001101101$
	I will give a hint for this problem in class on Thursday. Be there!
8.	State the pumping lemma for regular languages. Do not get confused this time!

9. Prove that $L = \{a^nb^n : n \ge 0\}$ is not regular. Hint: By contradiction, using the pumping lemma.

10.	Give a	polynom	ial time r	eduction of	of 3-SAT	to the	independ	lent set	problem.	

11. Prove that the halting problem is undecidable.