University of Nevada, Las Vegas Computer Science 456/656 Fall 2025 Assignment 1: Due Saturday August 30, 2025, 11:59:59 PM

TA T		
Namo		
1 vanic	 	

You are permitted to work in groups, get help from others, read books, and use the internet. Turn in the assignment as instruced by the Teaching Assistant, Sabrina Wallace wallace4@cs.unlv.edu

1. Let M_1 be the DFA shown below.

Let M_2 be the DFA shown below.

Let M_3 be the DFA shown below.

Which of the following languages is accepted by M_1 ? By M_2 ? By M_3 ?

- (a) The language of all binary strings in which every substring 00 is followed by 1. $$M_{\rm 2}$$
- (b) All strings over $\{a,b\}$ which end in b and which do not contain the substring bb. M_1
- (c) The language of all binary numerals for positive integers equivalent to 2 modulo 3. M_3
- (d) The language of all strings over $\{a,b\}$ in which every b is followed by a. None of the machines shown accepts this language.

2. Construct a DFA which accepts the language $\{b^iab^j: i, j \geq 0\}$, the language of all strings over $\{a, b\}$ which contain exactly one a. Your figure need not show the dead state.

3. Recall that \emptyset is the empty language. If L is some language, what is the concatenation $\emptyset L$?

 $\emptyset L = L$

4. Let $L_1 = \{\lambda\}$. the language consisting of only the empty string. If L_2 is some other language, what is the concatenation L_1L_2 ?

 L_2 .

5. Is concatenation of languages commutative? That is, is the equation $L_1L_2 = L_2L_1$ always true?

No.

- 6. Which of the following is true:
 - (a) If L is any language, $L^0 = L$.
 - (b) If L is any language, $L^0 = \emptyset$.
 - (c) If L is any language, $L^0 = \{\lambda\}$.

 $L^0 = \{\lambda\},\$

7. Does concatenation of languages distribute over union? That is, is $L_1(L_2 + L_3) = L_1L_2 + L_1L_3$ always true?

Yes, concatenation of languages distributes over union.

8. What is \emptyset^* , the Kleene closure of the empty language?

Although it may seem strange, the answer is $\{\lambda\}$.

- 9. True(T) or False(F).
 - i **F** Every language has a grammar.
 - ii **F** Every language is finite.
 - iii F 'Every language is infinite.
 - iv **F** Concatenation is commutative. That is, $L_1L_2 = L_2L_1$ for any languages L_1 and L_2 .
 - v T Concatenation is associative. That is, $(L_1L_2)L_3 = L_1(L_2L_3)$ for any languages L_1 , L_2 , and L_3 .
 - vi T The intersection of any two regular languages is regular.
 - vii T The complement of any regular languages is regular.
 - viii T The Kleene closure of any regular languages is regular.

10. The DFA M_1 shown in Problem 1 is not minimal, that is, it is equivalent to a DFA with fewer states. Can you draw a state diagram of that DFA? Your figure need not show the dead state.

The states q_0 and q_1 are equivalent. Here is the minimal DFA.

