University of Nevada, Las Vegas Computer Science 456/656 Fall 2025
Answers to Assignment 6: Due November 8, 2025

P means P-TIME.

1. True/False. If the answer is not known to science at this time, enter “O” for Open.

OP=NC

(a
(b) T Given any P-TIME problem P, there is a N'C reduction of P to the circuit value problem.
(

(d
(e) T Every undecidable language is N'P-hard.

)
)
¢) T Every context-free languags is NC.
) F If a language L is generated by a general grammar, L must be decidable.
)

2. Draw a DFA equivalent to the following NFA.

_/\/\/> ac a,b,C /?\ab&‘

ab e (0= (@) <2 Ca)

RN e

(o) —~2)

3. Give a definition of the class P-complete, and name a language in that class.

A language L is P—complete if every P-TIME language can be reduced to L using a reduction that
can be computed in polylogarithmic time using polynomially many processors. The circuit value
problem, CVP, is known to be P—complete.

4. Every language, or problem, falls into exactly one of these categories. For each of these languages
or problems, write a letter indicating the correct category. You will need to search the internet for

some of these.

A Known to be NC.

B Known to be P-TIME, but not known to be NC.

C Known to be NP, but not known to be P—TIME and not known to be N"P—complete.
D Known to be N'P—complete.

E Known to be P—SPACE but not known to be NP

F Known to be EXP—TIME but not known to be P—SPACE.

G Known to be EXP—-SPACE but not known to be EXP-TIME.
H Known to be decidable, but not known to be EXP-SPACE.
I RE but not decidable.

K co-RE but not decidable.

L Neither RE nor co-RE.



(i) B The circuit value problem (CVP).
(i) K All C++ programs which halt with no input.
(iii) A All base 10 numerals for perfect squares.
(iv) E All configurations of RUSH HOUR from which it’s possible to win.

(v) D All satisfiable Boolean expressions.

(vi) B Binary numerals for composite integers. (Composite means not prime.)

(vii) A Decimal numerals for positive multiples of seven, such as 7, 14, 21, 28, ...

(viii) E The furniture mover’s problem. Given a room with a door and a set of furniture, is it possible

to move all the furniture into the room through that door?

(ix) E,F,G The set of all positions of Chinese GO, on a board of any size, from which white can
win. (You will need to look this up.)

(x) A The Dyck language.

(xi) D The Jigsaw problem. (That is, given a finite set of two-dimensional pieces, can they be

assembled into a rectangle, with no overlap and no spaces.)
(xii) C Factorization of binary numerals.
(xiii) A Boolean matrix multiplication.
(xiv) I All C++ programs which do not halt if given themselves as input.
(xv) D SAT.
(xvi) D 3-SAT.
(xvii) A 2-SAT.
(xviii) D The Independent Set problem.
(xix) D The Subset Sum Problem.
(xx) D The Block sorting problem.
(xxi) E The Sliding block problem.
(xxii) D The Hamiltonian cyle problem.
(xxiil) D The Traveling salesman problem.
(xxiv) C The Graph isomorphism problem.
(xxv) D The 3-coloring problem.

(xxvi) A The 2-coloring problem.



(xxvii) L TOT, the set of all machine descriptions (M) such that M halts on all possible inputs.

5. Fill in the ACTION table and GOTO table of an LALR parser or the following annotated context-free
grammar. Your table should enforce the convention that both operations are left-associative, and
that multiplication has higher precedence than subtraction, where x represents any identifier.

1. E—FE — E3
2. B — E x4 Es
3. E— xq

x| — | * $ | E
56 1
52 | s4 | HALT
56 3
rl|sd4| rl
56 5
r2|(r2| r2
r3|r3| r3

S| O k=W N =] O

I will now try to explain how I was able to fill in the tables.

We know that E an be pushed onto the bottom, that is, onto stack state 0, and we also know that it
must then have stack state 1. From the subscripts in the grammar, we know that E must be given
stack state 3 when it is pushed onto stack state 2, and stack state 5 when it is pushed onto stack
state 3. Thus, we have all entries of the GOTO table.

From the subscripts in the grammar, we know that when —, %, or x is pushed, it must be given stack
state 2, 4, or 6, respectively. If the lookahead symbol is x we always shift if the stack is empty or the
top symbol is an operator. If the lookahead symbol is an operator, we might shift or reduce. How
can you tell? If shifting would violate a precedence rule, you reduce, otherwise you shift. Thus, you
cannot shift — if there is already an operator on the stack, and you cannot shift * if there is already
another % on the stack. But you can shift * if there is — on the stack.

If the top stack state is 6, you always execute r3. Otherwise, you reduce if the top stack symbol is
either 3 or 5 and shifting is not allowed, as described above, and if the lookahead symbol is either an

operator of the end-of-file symbol, $.

Practice the some input strings. At each step, ask what action will do the right thing. Here is my
suggested list of practive inputs, each followed by the output generated by the parser. These should
give you enough hints to fill in the tables.

z$ 3
r—xz*xx$ 33321
r—x$ 331
rxx—x$ 33231
zxx$ 332

zxx+x$ 33322 Error : it'sreally33232
z—z—x$ 33131



6. Consider the following annotated CF grammar G.

1. E—~FE — FEj3
E — —4FE5
. E— E N E7
. E— (sF9)10

oUW

E — x11

Here is an LALR parser for G.

Walk through the computation for the input string x — —(—z Az A —x).

z | — | AN ( ) $
0 | s11 | s4 s8 1
1 s2 | s6
2 | s11 | s4 s8 3
3 rl | s6 rl | rl
4 | s11 | s4 s8 5
5 r2 | r2 r2 | r2
6 | s11 | s4 s8 7
7 r3 | s6 r3 | r3
8 | s11 | s4 s8 9
9 s2 | s6 s10
10 rd | rd rd | rd
11 rd | rd r5 | rd




STACK INPUT | OUTPUT ACTION
$o x——(—z Az A—2)$

$ox11 ——(—zAzA-2)8 sl
$oEn ——(—zAxzA-2)$ |5 r5
$0F1—2 —(—zANzA-2)$ |5 52
$oE1 —2 —4 (—zAzA-2)$ |5 s4
$0F1 —2 —a(s —z Az A—x)$ |5 s8
$0F1 —2 —a(s—1 Az A—2)$ |5 s4
$oE1 —2 —a(s—az11 ANz A —xz)$ | 5 s11
$oE1 —2 —a(s—aLs Ax A —x)$ | 55 r5
$0E1 —2 —4(sEo Az A —x)$ | 552 r2
$oE1 —2 —a(sEoe x A —x)$ | 552 56
$0E1 —2 —4(sF9 N6 x11 A—2z)$ | 552 sl1
$0E1 —2 —a(sE9 N6 Er A —1x)$ | 5525 r5
$0E1 —2 —a(sEo N6 E7/e —x)$ | 5525 s6
$0E1 —2 —a(sE9 N6 E7 N6 —a z)$ | 5525 s4
$0F1 —2 —a(sFo Ne B7 N6 —a11 )$ | 5525 s11
$0E1 —2 —4(sE9 N6 E7 N6 —aEs )$ | 5525 r5
$oF1 —2 —a(sFo N6 E7 N6 Er )$ | 552552 r2
$0E1 —2 —a(sE9 N6 Er )$ | 5525523 r3
$oE1 —2 —a(sEo )$ | 55255233 r3
$oE1 —2 —4(sEo)10 $ | 55255233 510
$oF1 —2 —4Fs $ | 5525542334 T4
$oE1 —2 B3 $ | 5525523342 r2
$oEn $ | 55255233421 | rl
$oFEn $ | 55255233421 | HALT




7. Let N be a large integer, and w = (N) its binary numeral. Let n = |w|. Explain how O(n) parallel
processors can decide, in O(logn) time, whether N is divisible by 3.

In general, given a base b numeral of length n, how can O(n) parallel processesors decide, in O(logn)

time, whether IV is divisible by a given number m?

One method is to design a DFA, with m states, which accepts that set of numerals, where leading
zeros are allowed. The start state is the only final state. Write an m x m Boolean matrix Ty for
each digit d from 0 to b — 1. For a given numeral (N), let d; be its i*! digit, and let M; = T,,. The
product matrix M; x --- M, can be computed in O(logn) time using n processors. and the (0,0)*™®
entry of that product matrix is 1 if and only if N is divisible by m.

There are also two solutions which use the following properties of numerals.

(i) The value of a base b numeral is divisible by b — 1 if and only if the sum of its digits is divisible
by b—1

(ii) The value of a base b numeral is divisible by b+ 1 if and only if the alternating sum of its digits
is divisible by b+ 1.

Example: in this case, N is a divisible by 3.
1011111111000011101010111100110011010100010011011111100010001011110000001011110001111110010111000010

We explain the DFA method first. The following DFA M accepts the language of all Boolean strings

which are numerals for multiples of 3, and where leading zeros are allowed.

0 1

L o

~ @ W@

We use the method given in the handout regNC.pdf to decide whether the string is accepted by M.

Now consider the method given in (i) above. Since 4 is a power of 2, we can change a base 2 numeral to

a base 4 numeral easily, by replacing each pair 00 by 0, 01 by 1, 10 by 2, and 11 by 3. For our example

1011111111000011101010111100110011010100010011011111100010001011110000001011110001111110010111000010
we obtain:

23333003222330303110103133202023300023301332113002

We then use the tournament method to find the sum of those numerals in O(logn) time. The N is

a multiple of 3 if and only if that sum is a multiple of 3.

We now consider the method of (ii). We replace each pair of digits by their alternating sum. Thus
we replace 11 by 0, 01 by 1, 10 by -1, and 00 by 0. For our example, we obtain

-10000000-1-1-1000000110100100-10-10-100000-1000100-111000-1
We then use the tournament method to find the sum of those values in O(logn) time. That sum is
a multiple of 3 if and only if N is a multiple of 3.



8.

10.

11.

State the pumping lemma for regular languages. Do not get confused this time!

For any regular language L, there exists an integer p, called the pumping length of L, such that for
any w € L of length at least p, there exist strings z, y and z such that the following four statements
hold:

1. w=u2yz
2. Jzyl <p
3. ]y >0

4. for any i > 0 zy’z € L

Prove that L = {a™b™ : n > 0} is not regular.

By contradiction. Assume L is regular. Let p be the pumping length of L. Let w = aPb? € L. Since
|w| = 2p > p we can pick strings z, y, z, such that:

1. w=u2xyz
2. |zy[ <p
3. |yl >0

4. for any i > 0 zy’z € L

xy is a prefix of w of length no greater than p, and hence is a substring of a?, thus y = a”* for some
k> 0. Let i = 0. Then Then xz = a? *bP ¢ L since p— k < p. But by 4., xz € L, contradiction. We

conclude that L is not regular.

Give a polynomial time reduction of 3-SAT to the independent set problem.

We construct a P-TIME function R. Let £ = C; * Cy x - -+ x Cg be an instance of 3-SAT. Let each
Ci =tiq1 + ti2 + t; 3, where t; ; is either a variable or the negation of a variable.

We construct R(E) = (G, K), an instance of IND, where the vertices of G are v; ; for 1 <i < K and
1 <j <3. G has an edge from v; ; to vy ;s if and only if either i =4 or ¢; j %ty j» is a contradiction.

Then G has an independent set of K vertices if and only if E is satisfiable.

Prove that the halting problem is undecidable.

By contradiction. Assume that the halting problem is decidable, that is, there is a machine H such
that H(< M >,w) =1 if and only if the machine M halts with input w. Let @ be a machine which

is equivalent to the following program:

Read a machine desciption (M).
If H((M),{(M)) =1, run forever.
Else halt.

Now, run @ with input (Q). If H((Q),(Q)) = 1, then @Q runs forever, contradiction, while if
H{®Q),(Q)) = 0, @ halts, contradiction. We conclude that H cannot exist, hence the halting
problem is undecidable.



