Reductions and $\mathcal{NP} ext{--}$ Completeness

Wed Sep 24 02:54:44 PM PDT 2025

Reductions

If L_1 , L_2 are languages over the alphabets Σ_1 and Σ_2 , respectively, a reduction from L_1 to L_2 is function $R: \Sigma_1^* \to \Sigma_2^*$ such that $R(w) \in L_2$ if and only if $w \in L_1$. We write $L_1 \leq_R L_2$. We say " L_1 reduces to L_2 ." If R is \mathcal{P} -TIME, we write $L_1 \leq_{\mathcal{P}} L_2$. Reductions are used often in practice to shortcut calculations. A problem that can be easily reduced to an easy problem is easy.

Remark 1 If $L_1 \leq_{\mathcal{P}} L_2$ and L_2 is \mathcal{P} , then L_1 is \mathcal{P} .

Instances. A reduction from a problem to another need only be defined on instances of of the first problem. since we can let $R(w) = \lambda$ if w is not an instance. Reductions are typically defined only on instances.

A language L is in the class \mathcal{NP} -TIME (or simply \mathcal{NP}) if there is a non-deterministic machine M which which accepts L is time which is polynomial in the number of input bits of the given instance of L. The computation tree of M given an input w is a binary tree whose height is a polynomial function of |w|, the number bits required to write w. The input is accepted by if M is in an accepting state at at least one leaf of the computation. Thus, L can be decided by a deterministic machine in exponential time, by simply exploring the entire computation tree. But could we determine the answer in polynomial time? That is an unsolved problem, the famous " $\mathcal{P} = \mathcal{NP}$ " problem.

¹We usually mean that R is recusive, *i.e.* computable.

 $^{^{2}}$ We can assume that at any step, M has at most two legal choices.

Verification Definition of \mathcal{NP}

A language L is \mathcal{NP} if and only if there is some machine V and some integer k such that:

- 1. For every $w \in L$ there exists a string c, called a *certificate* for w, such that V accepts the string (w, c) in $O(n^k)$ time, where n = |w|.
- 2. If $w \notin L$ and c is any string, V does not accept the string (w, c).

\mathcal{NP} -Completeness

We define a language L to be \mathcal{NP} -complete if

- 1. $L \in \mathcal{NP}$, and
- 2. Every \mathcal{NP} language reduces to L in polynomial time.

Theorem 1 If there is any language which is both \mathcal{P} -TIME and \mathcal{NP} -complete, then $\mathcal{P} = \mathcal{NP}$.

Proof: Suppose that there is a language L_1 which is both \mathcal{P} -TIME and \mathcal{NP} -complete. Let Let L_2 be any \mathcal{NP} language Then $L_2 \leq_{\mathcal{P}} L_1$ by the definition of \mathcal{NP} -completeness. Since L_1 is \mathcal{P} , L_2 is \mathcal{P} by Remark rem: P implies P. \square

Boolean Satisfiability

Many \mathcal{NP} -COMPLETE problems (languages) have been identified, and the number grows constantly. The first such problem identified is SAT, Boolean satisfiability, proved \mathcal{NP} -complete by Theorem 2, the Cook Levin theorem. Using that theorem and Theorem 3, thousands (or more) additional \mathcal{NP} -complete problems have been found.

Let Bool be the languages of all *Boolean expressions*, defined to be expressions consisting of variables and operators, where all variables

have Boolean type and all operators are Boolean. To shorten our notation, we use "+" for or, " \cdot " for and and "!" for not. An assignment of a Boolean expression E is an assignment of truth values (there are only two truth values, true = 1 and false = 0) to each variable that appears in E. An assignment is satisfying if given those values, E is true. E is satisfiable if it has a satisfying assignment, otherwise E is a contradiction. For example, $x\cdot !x$ is a contradiction, since its value is false regardless of the assigned value of x, while $x\cdot !y$ is satisfiable, because the assignment x = 1, y = 0 is satisfying. Let $SAT \subseteq BOOL$ be the satisfiable expressions. We also write SAT to be the problem of determining whether $E \in SAT$. Any satisfying assignment of a E is a certificate which verifies that $E \in SAT$.

Theorem 2 (Cook-Levin) SAT is \mathcal{NP} -complete.

The proof of Theorem 2 is long, but straightforward. You can find it in books or on the internet.

Theorem 3 If L_1 is \mathcal{NP} -complete and L_2 is \mathcal{NP} , and there is a polynomial reduction R_1 of L_1 to L_2 , hence L_2 is \mathcal{NP} -complete.

Proof: We need only prove that every \mathcal{NP} language reduces to L_2 in polynomial time. Let $L_3 \in \mathcal{NP}$. Since L_1 is \mathcal{NP} -complete, there is a polynomial time reduction R_2 of L_3 to L_1 . The composition $R_2 \circ R_1$ is a polynomial time reduction of L_3 to L_2 . \square

Here is a reduction chain of \mathcal{NP} -complete problems.

$$SAT \leq_{\mathcal{P}} 3 - SAT \leq_{\mathcal{P}} IND \leq_{\mathcal{P}} SubsetSum \leq_{\mathcal{P}} Partition$$

These problems and reductions are described below.

k-SAT

A Boolean expression is in CNF, conjuctive normal form if it is the conjunction (and) of clauses, each of which is the disjunction (or) of

terms, each of which is either a variable or the negation (not) of a variable. $CNF \subseteq BOOL$ is the set of all Boolean expressions written in conjunctive normal form, while $k\text{-}CNF \subseteq CNF$ is the subset where each clause has at most k terms.

Note that k-CNF \subseteq CNF \subseteq BOOL.

We define k-SAT = k-CNF \cap SAT.

Theorem 4 For any $k \geq 3$, k-SAT is \mathcal{NP} -complete.

Theorem 5 2-SAT is \mathcal{P} -sc time.

We postpone the proofs of Theorems 4 and 5.

Independent Set

An instance of the independent set problem, abbreviated IND, is an ordered pair (G, K) where G is a graph and K is a positive integer. We say a set of vertices of G is independent if no two are connected by an edge. A solution (certificate) of (G, K) is an independent set of K vertices of G, thus IND is \mathcal{NP} by the verification definition of \mathcal{P} . We give a polynomial time reduction R of 3-SAT to IND. We define R only on 3-CNF, the language of instances of 3-SAT. By Theorem 3, IND is \mathcal{NP} -complete.

Subset Sum

An instance of the subset sum problem consists of a sequence of numbers $\sigma = x_1, \dots x_k$, together with a number K. That instance has a solution if there is some subsequence of σ whose sum is K. Without loss of generality, we assume that the x_k are positive. A subset of sum K is an easily verified certificate, hence subset sum is \mathcal{NP} . We give a polynomial time reduction of IND to subset sum, and thus subset sum is \mathcal{NP} -complete.

Partition

An instance of the partition problem is a sequence $\tau = y_1, \dots y_k$ of positive numbers. A solution to τ is a subsequence of τ whose sum is half the sum of the terms of τ , which is an easily verified certificate. We give a polynomial time reduction of subset sum to partition, and thus partition is \mathcal{NP} -complete.