
Reductions and NP–Completeness

Wed Sep 24 02:54:44 PM PDT 2025

Reductions

If L1, L2 are languages over the alphabets Σ1 and Σ2, respectively, a
reduction from L1 to L2 is function R : Σ∗

1 → Σ∗
2 such that R(w) ∈ L2

if and only if w ∈ L1. We write L1 ≤R L2. We say “L1 reduces to
L2.”

1 If R is P–time, we write L1 ≤P L2. Reductions are used often in
practice to shortcut calculations. A problem that can be easily reduced
to an easy problem is easy.

Remark 1 If L1 ≤P L2 and L2 is P, then L1 is P.

Instances. A reduction from a problem to another need only be defined
on instances of of the first problem. since we can let R(w) = λ if w is
not an instance. Reductions are typically defined only on instances.

A language L is in the class NP–time (or simply NP) if there is a
non-deterministic machine M which which accepts L is time which is
polynomial in the number of input bits of the given instance of L.2 The
computation tree of M given an input w is a binary tree whose height is
a polynomial function of |w|, the number bits required to write w. The
input is accepted by if M is in an accepting state at at least one leaf of
the computation. Thus, L can be decided by a deterministic machine
in exponential time, by simply exploring the entire computation tree.
But could we determine the answer in polynomial time? That is an
unsolved problem, the famous “P = NP” problem.

1We usually mean that R is recusive, i.e. computable.
2We can assume that at any step, M has at most two legal choices.

1

Verification Definition of NP

A language L is NP if and only if there is some machine V and some
integer k such that:

1. For every w ∈ L there exists a string c, called a certificate for w,
such that V accepts the string (w, c) in O(nk) time, where n = |w|.

2. If w /∈ L and c is any string, V does not accept the string (w, c).

NP–Completeness

We define a language L to be NP–complete if

1. L ∈ NP , and

2. Every NP language reduces to L in polynomial time.

Theorem 1 If there is any language which is both P–time and NP–

complete, then P = NP.

Proof: Suppose that there is a language L1 which is both P–time and
NP–complete. Let Let L2 be any NP language Then L2 ≤P L1 by
the definition of NP-completeness. Since L1 is P , L2 is P by Remark
rem: P implies P. ✷

Boolean Satisfiability

Many NP–complete problems (languages) have been identified, and
the number grows constantly. The first such problem identified is SAT,
Boolean satisfiability, proved NP–complete by Theorem 2, the Cook
Levin theorem. Using that theorem and Theorem 3, thousands (or
more) additional NP–complete problems have been found.

Let Bool be the languages of all Boolean expressions , defined to be
expressions consisting of variables and operators, where all variables

2

have Boolean type and all operators are Boolean. To shorten our no-
tation, we use “+” for or , “·” for and and “!” for not. An assignment

of a Boolean expression E is an assignment of truth values (there are
only two truth values, true = 1 and false = 0) to each variable that
appears in E. An assignment is satisfying if given those values, E is
true. E is satisfiable if it has a satisfying assignment, otherwise E is
a contradiction. For example, x·!x is a contradiction, since its value
is false regardless of the assigned value of x, while x·!y is satisfiable,
because the assignment x = 1, y = 0 is satisfying. Let SAT⊆BOOL
be the satisfiable expressions. We also write SAT to be the problem of
determining whether E ∈ SAT. Any satisfying assignment of a E is a
certificate which verifies that E ∈ SAT.

Theorem 2 (Cook-Levin) SAT is NP–complete.

The proof of Theorem 2 is long, but straightforward. You can find it
in books or on the internet.

Theorem 3 If L1 is NP-complete and L2 is NP, and there is a poly-

nomial reduction R1 of L1 to L2, hence L2 is NP–complete.

Proof: We need only prove that every NP language reduces to L2 in
polynomial time. Let L3 ∈ NP . Since L1 is NP-complete, there is a
polynomial time reduction R2 of L3 to L1. The composition R2 ◦R1 is
a polynomial time reduction of L3 to L2. ✷

Here is a reduction chain of NP–complete problems.

SAT ≤P 3− SAT ≤P IND ≤P SubsetSum ≤P Partition

These problems and reductions are described below.

k-SAT

A Boolean expression is in CNF, conjuctive normal form if it is the
conjunction (and) of clauses, each of which is the disjunction (or) of

3

terms, each of which is either a variable or the negation (not) of a
variable. CNF ⊆ BOOL is the set of all Boolean expressions written
in conjunctive normal form, while k-CNF ⊆ CNF is the subset where
each clause has at most k terms.

Note that k-CNF ⊆ CNF ⊆ BOOL.

We define k-SAT = k-CNF ∩ SAT.

Theorem 4 For any k ≥ 3, k-SAT is NP-complete.

Theorem 5 2-SAT is P–sc time.

We postpone the proofs of Theorems 4 and 5.

Independent Set

An instance of the independent set problem, abbreviated IND, is an
ordered pair (G,K) where G is a graph and K is a positive integer.
We say a set of vertices of G is independent if no two are connected
by an edge. A solution (certificate) of (G,K) is an independent set of
K vertices of G, thus IND is NP by the verification definition of P .
We give a polynomial time reduction R of 3-SAT to IND. We define
R only on 3-CNF, the language of instances of 3-SAT. By Theorem 3,
IND is NP-complete.

Subset Sum

An instance of the subset sum problem consists of a sequence of num-
bers σ = x1, . . . xk, together with a number K. That instance has a
solution if there is some subsequence of σ whose sum is K. Without
loss of generality, we assume that the xk are positive. A subset of sum
K is an easily verified certificate, hence subset sum is NP . We give a
polynomial time reduction of IND to subset sum, and thus subset sum
is NP-complete.

4

Partition

An instance of the partition problem is a sequence τ = y1, . . . yk of
positive numbers. A solution to τ is a subsequence of τ whose sum is
half the sum of the terms of τ , which is an easily verified certificate.
We give a polynomial time reduction of subset sum to partition, and
thus partition is NP-complete.

5

