
Our textbook is the sixth edition of Formal Languages and Automata, by Peter Linz.

Alphabets, Strings, Languages, and Machines

Alphabets

An alphabet is a finite set of symbols . There is no definition of symbol. Alphabets used in this course

include:

The alphabet of all ASCII symbols.

The Roman alphabet: upper case, lower case, or both.

The decimal alphabet: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

The binary alphabet: {0, 1}.

The unary alphabet: {1}.

Small subsets of the Roman alphabet, such as {a, b}.

Strings

A string is a finite sequence of symbols over some alphabet. For example, if Σ = {a, b, c}, then a, b,

aba, abccaa, are strings of length 1, 3, or 6 over {a, b, c}. The empty string, denoted λ (or ǫ) has length

zero and consists of no symbols.

We write Σ∗ to mean the set of all strings over the alphabet Σ. Σ∗, which is countably infinite. For any

string w ∈ Σ∗, we let |w| be the length of w.

The binary alphabet is of particular importance in computer science. We use the term binary string to

mean any string over the binary alphabet.

Languages

A language is defined to be a set of strings over a particular alphabet. If L is a language over Σ, then

L ⊆ Σ∗.

There is no definition of symbol, and thus anything can be a symbol. The language of DNA strings is

over the alphabet consisting of the four nucleotides: adenine, thymine, guanine, and cytosine, usually

abbreviated as A, T, G, and C.

Example. A programming language is a set of programs , each of which is a string over the alphabet

consisting of all symbols used in that language. including blank and end-of-line.

A common claim is that languages are used for communication. This is true in many cases, but it is not

part of the definition.

We do not deal with natural languages, such as English, in this course.

1

Numerals and Numbers

We distinguish between a number and a numeral. A number is an abstract object which has no physical

existence. A numeral is something (usually a string) which denotes a number. If n is a number, we write

〈n〉 to mean a numeral which denotes n.

Problems and Languages

We are primarily interested in infinite problems, that is, problems which have infinitely many instances.

For example, “What is 2+3?” is an instance of the addition problem.

A 0/1 problem is any problem where the answer for each instance is either 0 (false) or 1 (true). For

example, an instance of the primality problem is a numeral 〈n〉, and the answer is 1 (true) if n is prime, 0

(false) otherwise.

A problems that is not 0/1 could have a 0/1 version. For example, instead of asking for the prime factors

of n, we could ask whether n has a prime factor smaller than a given other number a.

Languages and 0/1 problems are essentially the same thing. For any language L, there is a membership

problem. If L ⊆ Σ∗, every string over Σ is an instance of the membership problem for L. For the instance

w ∈ Σ∗, the answer is 1 if w ∈ L and 0 if w /∈ L. Many language classes, such as P-time, are defined by

the hardness of their membership problems. A language is said to be “hard” or “easy” if its membership

problem is hard or easy. The precise meaning depends on the context of the discussion. Here are some

examples that arise in this course.

Easy Hard

Regular Non-Regular

Polynomial Time NP-Hard

Recursive Undecidable

Machines

A machine in this course is an abstract machine, which is a mathematical object. (The computer on your

desk is a physical machine.) A computation of a machine is a sequence of steps. A machine has an initial

configuration, also called the instanteous description, or id. There is an initial id, and at each step, the

instantaneous description changes according to the rules of the machine. A computation can be infinite,

or end with a halt, or the machine may hang, meaning there is no legal next step. Each id can be desribed

by a string. This string must encode everything needed for the computation, such as the machine’s current

state, contents of its memory, unread input, and written output. A string is necessarily finite, but during

an infinite computation, the id could increase its length without limit.

Accept and Decide

We say that a non-deterministic machine M accepts a string w if, given the input w, M may halt in an

accepting state. We say language L if M accepts every w ∈ L and does not accept any string not in L.

2

We say that M decides L if, given an input string w, M halts in an accepting state if w ∈ L and halts in

a rejecting state if w /∈ L.1

Regular Languages

The Chomsky hierarchy is consists of four types (or classes) of languages. The easiest of these is the class

of Type 3 languages, otherwise known as regular languages.

Deterministic Finite Automata

A machine M is called a finite automaton (FA) if its id consists of one of a finite set of states together

with its current unread input. A deterministic finite automaton (DFA) M has a finite set of states Q, one

of which (usually called q0) is the start state. There is a subset F ⊆ Q of final states. An input for a DFA

is a string w ∈ Σ∗, where Σ is called the input alphabet. M also has a transition function δ : Q×Σ → Q.

Formally, M is the quintuple (Q,Σ, δ, q0, F). An id of M is an ordered pair (q, u), where q ∈ Q is the

current state and u ∈ Σ∗ is the remaining (unread) input. The initial id of M is (q0, w), where w is the

input string. We can generalize the transition function to δ : Q× Σ∗ → Q by recursion:

δ(q, λ) = q, for q ∈ Q.

δ(q, wa) = δ(δ(q, w), a), for q ∈ Q, w ∈ Σ∗, a ∈ Σ.

Steps of M . The number of steps a DFA M takes during a computation is equal to the length of the

input string. During each step, M reads the first symbol of the remaining input, then changes its state. If

q ∈ Q is the current state and a is the next symbol of input, the state changes to δ(q, a)). If the last state

is final, w is accepted, otherwise w is rejected. If a DFA M accepts a language L, it is also true that M

decides L, since it always halts. A language is defined to be regular if it is accepted by some DFA

Example

Let M be the DFA where

Σ = {a, b}, Q = {q0, q1, q2},

F = {q2}, and δ is defined by

the transition table given in

Table 1, and illustrated as a

state diagram in Figure 2

δ a b

q0 q0 q1

q1 q2 q1

q2 q0 q1

Table 1

0

2

1

a

b

ba

b

a

Figure 2: State Diagram of M

Figure 3 shows a computation of M which accepts the string abba, while Figure 4 shows a computation of

M which rejects the string abab.

1If M accepts L, there there is no requirement that it actually reject a string w /∈ L. It could instead hang or run forever.

3

10

2
a

b

ba

b

a 10

2
a

b

ba

b

a 10

2
a

b

ba

b

a 10

2
a

b

ba

b

a10

2
a

b

ba

b

a

(2,)λ(0,abba) (0,bba) (1,ba) (1,a)

Figure 3: Computation of M accepting abba. For simplicity, the states are labeled

0, 1, 2 instead of q0, q1, q2. The final state is doubly circled. The figures show

the sequence of ids. The current state is indicated in blue, and the current id is

underneath the figure. Note that the last state is final.

10

2
a

b

ba

b

a 10

2
a

b

ba

b

a 10

2
a

b

ba

b

a10

2
a

b

ba

b

a 10

2
a

b

ba

b

a

(0,abab) (0,bab) (1,ab) (2,b) (1,)λ

Figure 4: Computation of M rejecting abab. Note that the last state is not final.

Dead States. A DFA may have a dead state, a state which is not final, and which the machine cannot

leave, regardless of the remaining inputs. The machine shown in Figures 3 and 4 does not have a dead

state. The machine shown in Figure 5 has a dead state, q1.

1

2

0

ba

b

a

a,b

Figure 5: A DFA with one dead state.

Non-deterministic Finite Automata

A machine is deterministic if, from a given id, there is at most one possible next id A machine is non-

determinisiic if, from any given id, there can be any number of possible next ids. Confusingly, any

deterministic machine is a non-deterministic machine.

Recall that, for any set S, 2S , the powerset of S, is the set of all subsets of S. If |S| = n, then
∣

∣2S
∣

∣ = 2n.

A non-deterministic finite state automaton (NFA) has the same basic parts as a DFA, except that, for

clarity, we write ∆ for the transition function, as is done in Wikipedia. For any state q ∈ Q and a ∈ Σ,

∆(q, a) is a set of states rather than a single state.2 Using recursion, we also define ∆(q, w) ⊆ Q for q ∈ Q,

w ∈ Σ∗:

∆(q, λ) = {q}.

∆(q, wa) =
⋃

q′∈∆(q,w) ∆(q′, a).

2Our textbook still uses δ for an NFA.

4

If the current state is q and the next input is a, then the machine can move to any member of ∆(q, a).

An NFA may also have the option of changing states without reading a symbol. Such a move is called

a λ-move or an ǫ-move. Formally, an NFA is a quintuple (Q,Σ,∆, q0, F) where ∆ : Σ ∪ {λ} × Q → 2Q,

q0 ∈ Q, and F ⊆ Q.

Example. Let M be the NFA whose state diagram is shown in Figure 6.

1

2

0

b

a

a

b
λ

Figure 6: NFA M

∆ a b λ

q0 {q0, q1} ∅ ∅

q1 ∅ {q2} ∅

q2 ∅ {q0} {q1}

Table 7: Transition Table of M

NFA Steps. The initial id of an NFA is the ordered pair (q0, w), where w is the input string. During

each step, either M reads a string and changes state, or uses a λ-move to change states and read nothing.

We show a computation of M with input abb in Figure 8. At the first step, M reads a and moves to q1.

Alternatively, M could read a and stay in q0, but then it would be impossible to accept the input. In case

of a choice, an NFA always make a choice which leads to acceptance, if that is possible.

At the third step, M has another choice. M makes the correct guess, namely to make a λ-move, reading

nothing and changing to state q1. This choice allows the input to be accepted at the next step.

1

2

0

b

a

a

b
λ

1

2

0

b

a

a

b
λ

1

2

0

b

a

a

b
λ

1

2

0

b

a

a

b
λ

1

2

0

b

a

a

b
λ

(2,)λ(2,b)(1,bb)(0,abb) (1,b)

Figure 8: Accepting Computation of M with Input abb.

For a given input, the number of possible computations of an NFA could be an exponential function of the

length of the input string. Of these computations, there could be some that end in a final state, some that

end in a non-final state, and some that never finish reading the input, either by hanging or entering an

infinite loop. When we say that M accepts w, we mean that there is at least one computation of M starting

at (q0, w) which ends in a final state. An NFA always make the correct guess, if there is one, to achieve

acceptance. This rule, “benevolent non-determinishm,” also holds for other non-deterministic machines

that we study, such as push-down automata (PDA) and non-deterministic Turing machines (NTM).

Equivalent Machines

Informally, machines M1 and M2 are equivalent if the do the same thing. For example, two finite automata

are equivalent of they accept the same language. The number of steps of a computation does not play a

role in this definition; the number of steps required by two equivalent machines with the same input could

5

be different. If M is a finite automaton, there could be many other automata equivalent to M ; however,

the minimal DFA for a regular language is unique, as stated in Theorem 1.

Theorem 1 If L is a regular language, there is a unique minimal DFA which accetps L.

Minimal means smallest number of states. If M1 is a minimal DFA which accepts L and M2 is also a

minimal DFA which accepts L, the state diagrams for the two machines are identical, expect for possibly

changing the names of the states.

Minimizing a DFA

We now give Hopcroft’s algorithm for finding a minimal DFA. Let M be a DFA which accepts a language

L over an alphabet Σ. The algorithm consists of two parts:

(a) Elimination of useless states.

(b) Identification of equivalent (indistinguishable) states.

Useless States. Supose M = (Q,Σ, δ, q0, F) is a finite automaton. A state qk of M is defined to be

useless if no computation of M ever reaches state qk.

Informally, two states qi, qj are equivalent if, after reading some prefix of the input string, it doesn’t matter

whether a computation is in qi or qj. More formally, we say that qi and qj are distinguished if one of the

following holds:

(a) qi ∈ F and qj /∈ F ,

(b) qi /∈ F and qj ∈ F ,

(c) For some a ∈ Σ, δ(qi, a) and δ(qj, a) are distinguished. Note that the definition of distinguished is

recursive. Finally, qi, qj ∈ Q are indistinguishable, that is, equivalent, if they are not distinguished.

Example 1. Let M be the DFA illustrated by the state diagram in Figure 9.

0

1

2

3

4

5 6

b
b

a a,b

ab

a

a a

b

ab

b

Figure 9: The DFA M

6

We first note that q6 is useless, hence

we delete it. We write a square array

whose rows and columns are the remain-

ing states. We mark the entry in row

qi and column q whenever we prove that

those two states are distinguished. Ini-

tially, no final state is equivalent to any

non-final state.

q0 q1 q2 q3 q4 q5

q0 × ×

q1 × ×

q2 × ×

q3 × ×

q4 × × × ×

q5 × × × ×

We now iterate through Q × Σ × Q. For

each (qi, a, qj), we mark the (i, j)th entry

of the array if, for some x ∈ Σ, we can de-

termine that δ(qi, x) and δ(qj, x) are dis-

tinguished.

We first note that δ(q0, b) = q1 and

δ(q2, b) = q4, which are distiguished. Thus

q0 and q2 are distinguished.

q0 q1 q2 q3 q4 q5

q0 × × ×

q1 × ×

q2 × × ×

q3 × ×

q4 × × × ×

q5 × × × ×

Similarly, we can determine that the pairs

(q0, q3), (q1, q2), and (q1, q3) are distin-

guished, and we mark the array accord-

ingly.

q0 q1 q2 q3 q4 q5

q0 × × × ×

q1 × × × ×

q2 × × × ×

q3 × × × ×

q4 × × × ×

q5 × × × ×

We iterate over Q × Σ × Q until no further pairs are found to be distinguished. All unmarked pairs are

then equivalent. We identify the equivalent pairs (q0, q1), (q2, q3), and (q4, q5).

The resulting minimal DFA equivalent to M is illustrated in Figure 10.

0/1 2/3 4/5
a b

a a,bb

Figure 10: The minimal DFA equivalent to M .

7

Example 2. Let M be the DFA illustrated by the state diagram in Figure 11.

0

1

2

3

4

5 6

b
b

a,b

a

a

a a

b

ab

b

a

b

Figure 11: The DFA M

We first note that q6 is useless, hence

we delete it. We write a square array

whose rows and columns are the remain-

ing states. We mark the entry in row

qi and column q whenever we prove that

those two states are distinguished. Ini-

tially, no final state is equivalent to any

non-final state.

q0 q1 q2 q3 q4 q5

q0 × ×

q1 × ×

q2 × ×

q3 × ×

q4 × × × ×

q5 × × × ×

We now iterate through Q×Σ×Q. For each x ∈ Σ and qi, qj ∈ Q, we mark the (i, j)th entry of the array

if we can determine that δ(qi, x) and δ(qj, x) are distinguished.

During the first iteration, q0 and q1 are not distinguished, since q2 and q3 are not distinguished.

Continuing the first iteration, we can dis-

tinguish q2 q0 from q2, since δ(q0, b) = q1,

which is distinguished from δ(q2, b) = q4.

Similarly, we distinguish q0 from q3, q1

from q2, and q1 from q3.

Continuing the first iteration, we distin-

guish q2 and q3, since δ(q2, a) = q3, which

is distingused from δ(q3, a) = q4.

q0 q1 q2 q3 q4 q5

q0 × ×

q1 × ×

q2 × × ×

q3 × × ×

q4 × × × ×

q5 × × × ×

Similarly, we can determine that the pairs

(q0, q3), (q1, q2), and (q1, q3) are distin-

guished, and we mark the array accord-

ingly.

q0 q1 q2 q3 q4 q5

q0 × × × ×

q1 × × × ×

q2 × × × × ×

q3 × × × × ×

q4 × × × ×

q5 × × × ×

8

During the second iteration, we can dis-

tinguish q0 and q1, since δ(q0, a) = q2

which is now distinguished from δ(q1, a) =

q3.

q0 q1 q2 q3 q4 q5

q0 × × × × ×

q1 × × × × ×

q2 × × × × ×

q3 × × × × ×

q4 × × × ×

q5 × × × ×

Continuing to iterate over Q × Σ × Q, no further pairs are found to be distinguised. All unmarked pairs

are then equivalent. We identify the equivalent pair (q4, q5). The resulting minimal DFA equivalent to M

is illustrated in Figure 12.

4/50

1

2

3

ba

a

b

ab a

b

a,b

Figure 12: The minimal DFA equivalent to M .

NFA to DFA

Given an NFA M1 with n states, the Rabin-Scott powerset construction yields an equivalent DFA M2 with

2n states. We can then apply Hopcroft’s algorithm to obtain a minimal DFA, which may have fewer states.

Let M1 = (Q,Σ,∆, q0, F) be an NFA. We first consider the case where M1 no λ-transitions.

Let F = (Q ⊆ Q : Q ∩ F 6= ∅). Let M2 =
(

2Q,Σ, δ, {q0},F
)

, where δ(a,Q) =
⋃

q∈Q
∆(q, a) for all Q ⊆ Q,

and F = (Q ⊆ Q : Q ∩ F 6= ∅). Then M2 is equivalent to M1.

If there are any λ-transitions, we first replace the initial NFA by its λ-closure. The transitive closure of

an NFA is obtained by removing λ-transitions one at a time, modifying F or δ at each step, according the

following rules.

1. Pick a λ-transition from qi to qj.

2. If qj is final and qi is not, make qi final.

3. If qk ∈ δ(a, qj) for some a ∈ Σ ∪ {λ}, let qk become a member of δ(qi, a).

4. Repeat step 3 until there are no further changes.

5. Delete the λ-transition from qi to qj.

9

6. Return to step 1 if there are any more λ-transitions.

Figure 13 shows the complete calculation of a minimal DFA equivalent to an NFA.

Figure 13(a) shows the NFA M1.

Figure 13(b) shows the NFA after the λ-transitions from q0 to q2 and from q3 to q4 are removed.

Figure 13(c) shows the NFA after the λ-transition from q1 to q3 is removed, yielding the λ-closure of

M2.

Figure 13(d) is obtained by deleting the now useless state q4.

Figure 13(e) shows the NFA obtained by the powerset construction. There should be 24 states. Eleven

of those are not shown since they are useless. (The usual braces for the subsets are not shown.)

States {q0} and {q0, q2} are indistinguished, and are hence identified in the minimal DFA M2, shown

in Figure 13(f).

0

1

2

3

4

λ

a

λ

λ

a bab

0

1

2 4

3
λ

a

a
ab a,ba

0 2 4

31

a

a

a,b

a,bab a

0 2

31

a

a,b

a,baab

2

31

0,20
ab

a

a

b
a a,b

b

2

31

0/0,2
a

a,baab

b

(a) (b) (c)

(e)(d) (f)

Figure 13: Construction of a Minimal DFA Equivalent to an NFA.

Regular Expressions

A regular expression is an algebraic expression that defines, or describes, a regular language. Regular

expressions make use of closure properties of the class of regular languages.

Closure Properties of the Class of Regular Languages

We define operations on langagues.

1. (Union) If L1 and L2 are regular languages, their union L1 ∪L2, usually written L1+L2, is a regular

language.

2. (Intersection) If L1 and L2 are regular languages, their intersection L1 ∩ L2 is a regular language.

3. (Complement) If L is a language over an alphabet Σ, the complement of L is the set of all strings

10

over Σ which are not members of L. We write Σ∗\L or L′ for the complement of L. The complement

of any regular language is regular.

4. (Concatenation) If L1 and L2 are languages, their concatenation is L1L2 = {uv : u ∈ L1, v ∈ L2}. If

L1 and L2 are regular, L1L2 is regular. We define “powers” of a language by repeated concatentation.

L2 = LL, L3 = LLL, and so forth. L1 = L and L0 = {λ}, the language consisting of just one string,

the empty string.

5. (Kleene Closure) We define the Kleene closure of a language L to be the union of all powers of L,

written L∗. We can write L∗ = L0+L1+L2+ · · · Formally, a string is in L∗ if it is the concatenation

of finitely many members of L. It is important to note that the empty string is a always a member

of L∗. If L is regular, L∗ is regular.

Exercise 1 Let L1 = {a, ab, c} and L2 = {λ, a, b}.

(a) Find L1 + L2. Ans: {λ, a, b, c, ab}

(b) Find L1 ∩ L2. Ans: {a}

(c) Find L1L2. Ans: {a, c, aa, ca, cb, aba, abb}

(d) Draw a state diagram for a DFA which accepts the complement of the language accepted by the

DFA in Figure 2.

Ans: Simply invert the DFA defined in Table 1

whose state diagram is given by Figure 2. meaning

that every final state becomes non-final and every

non-final state becomes final. (This trick does not

work for an NFA.)

a

b

ba

b

a 1

2

0

Figure 14: State Diagram of a DFA which Accepts

the Complement of the Language Accepted by the

DFA whose State Diagram is Shown in Figure 2.

Regular Expressions

Every regular expression describes a regular language; conversely, every regular language L is described by

a regular expression, but different regular expressions can describe the same language. If Σ is the alphabet

of L, a regular expression for L is a string over the alphabet Σ + {λ, 6o,+,∗ , (,)}.

Regular expressions for languages over Σ are algebraic expressions, where the variables are the symbols of

Σ, together with λ and 6o; and the operators are union, represented by “+”, concatenation, represented by

concatenation, and Kleene closure, represented by ∗. Among these operators, Kleene closure has highest

precedence, followed by concatenation, followed by union. Parentheses override precedence in the usual

manner.

If a ∈ Σ, the regular expression a represents the language {a}. The regular expression λ represents the

language {λ}, and the regular expression 6o represents the empty language, ∅.

11

00

o

0 0 10
b

a b

a*b*

a,b

(a+b)*

0 1
a

aλ

a*

a

Figure 15: Regular Expressions over Σ = {a, b} with Equivalent DFA.

Combining Regular Expressions

We now show how to find a regular expression for the union, concatenation, or Kleene closure of languages

which already have regular epressions. In the list below, we use parentheses to ensure that operations are

done in the right order.

(a) If u is a regular expression for a regular language L, then (u) is also regular expression for L. (b)

If u, v are regular expressions for regular languages L and M , then u + v is a regular expression for the

union L+M . (c) If u, v are regular expressions for regular languages L and M , then (u)(v) is a regular

expression for the concatenation LM . One of both of those pairs of parentheses my be unnecessary. (d)

If u is regular expressions for a regular language L, then (u)∗ is a regular expression for the Kleene closure

L∗. The pair of parentheses may be unnecessary.

In Figure 15 we show a DFA equivalent to six simple regular expressions.

Union is commutative, associate and idempotent, but concatenation is only associative. For example,

a+ b = b+ a, (a+ b) + c = a+ (b+ c), a+ a = a, and a(bc) = a(bc),

Concatenation distibutes over union on both sides; for example, a(b + c)d = abd + acd. Kleene closure

does not distribute over concatenation. For example, (ab)∗ 6= a∗b∗. Kleene closure is also idempotent: for

example, (a∗)∗ = a∗.

T/F Questions about Regular Expressions

(a) λ∗ = λ

(b) a+ λ = a

(c) a+ 6o = a

(d) 6o∗ = 6o

(e) 6o∗ = λ

(f) 6o(a+ b) = 6o

(g) 6o(a+ b) = a+ b

(h) ab∗ + ab∗ = ab∗

(i) (a+ ab) = a(b+ λ)

Answers to Questions:

(a) T

(b) F

(c) T

(d) F

(e) T

(f) T

(g) F

(h) T

(i) T

12

Five Definitions of a Regular Language. The follwing five definitions of a regular language are

equivalent:

1. A language is regular if and only if it is accepted by some DFA.

2. A language is regular if and only if it is accepted by some NFA.

3. A language is regular if and only if it is described by some regular expression.

4. A language is regular if and only if it is generated by a left-regular grammar.

5. A language is regular if and only if it is generated by a right-regular grammar.

We will get to the definitions of left-regular and right-regular grammars later.

The Pumping Lemma

We can prove that a given language is regular by exhibiting a finite automaton which accepts it. The

pumping lemma gives a technique for proving that certain languages are not regular.

The method is to first prove the pumping lemma, which states that every string w which is a member of

some regular language L has a “pumpable” substring, namely a substring which can be duplicated without

leaving L. We give the formal statement below.

We can then, for example, prove that L = {anbn} is not regular, by showing that there are arbitrarily long

strings of L that do not have pumpable substrings.

Theorem 2 (Pumping Lemma) For any regular language L, there is an integer p such that for any

w ∈ L of length at least p, there are strings x, y, z such that the following four conditions hold: Condition

1. w = xyz

Condition 2. |xy| ≤ p

Condition 3. y is not the empty string

Condition 4. For any integer i ≥ 0, xyiz ∈ L.

The number p is called a pumping length of L.

Proof: Let M = (Q,Σ, δ, q0, F) be a DFA which accepts L, and let p = |Q|, the number of states of M .

Let w ∈ L of length n, where n ≥ p. Let ai be the ith symbol of w, that is, w = a1a2 · · · an. Pick an

accepting computation of M with input w. For 0 ≤ t ≤ n, let qt ∈ Q be the state of M after t steps of

that computation, that is, the state of M after reading w[1 . . . t] = a1, . . . at. Note that q0 = q0, the start

state of M , that δ(qt−1, at) = qt for all t, and that qn ∈ F .

The set of states Q has size p, and the sequence of states q0, q1, · · · qp has length p + 1 hence, by the

pigeonhold principle,3 the first p terms of the sequence must contain a duplicate; that is, qj = qk for

some 0 ≤ j < k ≤ p. Thus, the computation path through M with input w has a loop, as shown in

Figure 16. When that loop is excised, the resulting computation is still accepting, as shown in Figure

17. A computation which traverses the loop multiple times, as shown in Figure 18, is also accepting.

We now define the strings x, y, and z. Let x = w[1,j] = a1 · · · aj, y = w[[]j + 1, k] = aj+1 · · · ak, and

z = w[[]k + 1, n] = ak+1 · · · an. We verify the four conditions of the pumping lemma. xyz = a1 · · · an = w,

3If each pigeon is in a pigeonhole and there are more pigeons than holes, at least one pigeonhole has at least two pigeons.

13

satisfying condition 1. |xy| = k ≤ p, satisfying condition 2. |y| = k − j >= 1, satisfying condition 3. We

need to prove condition 4, that is, that xyiz is accepted by M for all i ≥ 0. For i = 0, xz is accepted

by M since δ(qj, y) = qk = qj, as shown in Figure 17. For i = 1, xiz = w ∈ L. For i > 1, we have

δ(qj, yi) = qk = qj, hence M accepts xyiz, as shown in Figure 18.

In Figures 16, 17, and 18, n = 10, j = 3, and k = 8. to avoid clutter, we label each state qt as simply t in

the figures.

0 1 2 3 = 8 9 10

4 7

a1 a2 a3

a4 a8

a9 a10

a5

5 6a6

a7

Figure 16: Computation of M with Input w = xyz

0 1 2 3 = 8 9 10

4 7

a1 a2 a3

a4 a8

a9 a10

a5

5 6a6

a7

Figure 17: Computation of M with Input xz

0 1 2 3 = 8 9 10

4 7

a1 a2 a3

a4 a8

a9 a10

a5

5 6a6

a7

Figure 18: Computation of M with Input xy2z

14

A Proof of Non-Regularity using the Pumping Lemma

We can use the pumping lemma to prove certain languages not to be regular, by contradiction.

Theorem 3 Let L = {anbn : n ≥ 0}. Then L is not regular.

Proof: By contradiction. Suppose L is regular. Let p be a pumping length of L. Let w = apbp ∈ L. Note

that |w| ≥ p, hence there exist strings x, y, z which satisfy the four conditions of the pumping lemma. By

Condition 1., xyz = w. Thus xy is a prefix of w. By Condition 2., |xy| ≤ p, hence xy = ak for some k ≤ p.

By Condition 3., y = al for 1 ≤ ℓ ≤ k. It follows that x = ak−ℓ and z = ap−kbp. Thus xz = ap−ℓbp. By

Condition 4., we can pick i = 0 and we then have xy0z = xz ∈ L. Since ℓ ≥ 1, xz has more b’s than a’s,

and hence cannot be a member of L. Contradiction. We conclude that L is not regular.

15

