Addition is NC

We consider addittion of two n-bit binary numerals, a. and b. The digits of these numerals are a;
and b, for 0 <1i < n. The sum we are trying to compute is s, whose digits are {s;} for 0 <i < n.
We let ¢, be the ith carry bit during the addition, for 0 < i < n. We note that s, = (a; + b, + ¢;)
mod 2, where ¢, is the i'" carry bit. The values of ¢; and s, can be computed by the traditional
ripple method, as in the following program.

co =20
for(i=0ton—1)
{
s; = (a; +b; + ¢;) mod 2
if(a; + b, ==0) ¢;;, =0
else if(a; + b; == 1) ¢,y = ¢;
else if(a; + b, ==2) ¢;;, =1

S, = C,

To have an NC algorithm, we must be able to compute all carry bits in O(log” n) steps using
O(n*) processors, for some constant k. For this problem, we can choose k = 1.

Changing a Sequential Algorithm to NC

Consider the following straight line program.

u=1
v=u
r=uv
y=ux
z=yY

We can see that the value of each of the variables is 1, but that computation takes five steps by
a sequential processor.

Our method is to store, at each variable, the actual valuue if we know it, otherwise instructions
for how to find the value. Five processors, working simultaneously, can execute the following four
steps resulting in a value of 1 for each variable.

Step 1: Step 2: Step 3: Step 4:
value(u) =1 value(v) = value(z) = value(z) = 1
value (v) = copy value(u) (z) = copy value(u) value(y) =

value (z) = copy value(v)  value(y) = copy value(u) value(z) = copy value(u)

value (y) = copy value(z) (2) =
value (z) = copy value(y)

Step 1 should be clear; the value of each variable except u is obtained by copying the value of
another variable. The processor that writes that instruction does not yet know what that copied
value will be.



Step 2 consists of four processors executing composition, just as in the document oddNC.pdf. The
value of v is now 1, because its instruction is to copy the value of w, which is previously known
to be 1. The actual value of z is not known, but by combining the first three lines of Step 1, we
know that it is a copy of the value of u. The processor does not know that u = 1, since it would
require two steps to fetch that value and write it to x, hence “copy value(u)” is written to x.
Similarly, “copy value(x)” is written to z.

In Step 3, the values of x and y are determined, but the value of z is not: the instruction “copy
value(u)” is stored in z. Step 4 finishes the algorithm.

Decreasing the number of steps from five to four does not seem like much, but more generally,
if we have a chain of assignments with n variables, we can evaluate all of them in O(logn) steps
instead of n by using n processors.

The NC Algorithm A for Addition

During the first step of A, we compute a statement for each carry bit. Each statement will be one
of the following three: value(c;,,) = 0, value (¢;,,) = 1, or value (c,;,) = copy value ¢;, depending
on the value of a;+b;. We indicate the steps of A with the following pseudocode. For convenience,
we assume n = 2™ We use the notation rhs[i] to denote the right hand side of the assignment of
value(c;), which is either 0, 1, or “copy value(c,)” for some j < i.

for all 0 < i < n in parallel Step (1)

rhs[i +1] =0
else if(a; + b; == 2)

rhsfi+1] =1
else

rhs[i + 1] = “copy value(c;)”
for (int £ = 0; £ < m; {++) // sequentially
for all (i = positive even multiple of 2° not more than n) in parallel (Step ¢ + 1)
if (rhs[i] = “copy value(c;)”) // j=1—2°
rhs[i] = rhs[j]
for (int ¢ = m-1; £ > 0; ¢~ —) // sequentially
for all (i = positive odd multiple of 2¢ less than n) in parallel (Step 2m — ¢+ 1)
if (rhs[i] = “copy value(c;)”) // j=1i—2"
rhs[i] = rhs[j]
for (int i = 0;i < n;n++)
s; = (a; +b; +¢;) mod 2
The number of steps is 2m + 2 = O(logn), and the number of processors needed does not exceed
n+ 1 at any step. Thus, A is an NC algorithm.



Example

We now work through an example instance of the addition problem, where n = 32
32 31 30 29 28 27 26 25 24 23 2221 2019181716151413121110 9 8 7 6 5 4 3 2 1 0
a o|1]{o|1f{o|1]o|1|{0|0o|[1|0o|1|1][0|1]|0f0|1|1]{0|[1]|0f0|21|0|O0O|[1|1|[1]1]0O
b of1|{1|of1|o|1|o|1|1]{0|1]|0f0|1|0|1|1|1|2|1|0|O|O|OfO|1|1|1|0|1]|1
atb o221 |1f1f{x |1 |1|1|{a|{2|af1|{r|{2|nf1|1|{2|2|1|{1|o|of1|o|1|2|2]1]2]1
Cc i{1|1f1{1|12}y1|1f{1|{1y1|1f1|{1|1f1|1{1|{1(0{0(0{0O|O0OfO|1T|2T|1T|21|1|0]|0O0
s 1|/1/0|ofo|o|o|ofo|o|ofo|o|o|o|o|ofo|1|0|1|1]|0f0|1|1|0|[1|1|[0]|O0]|1
co =0 o =0 o =0 ce =1 ¢, =0 In our tables, we delete the words
1 = ¢ c, =1 c, =1 (7) c; =1 “value” and “copy value” to save space.
e =1 c, =1 cs =0 cs =1 For each 0 < t < 2m + 1 = 11, we
Cs = Cy =1 Cc, =0 cs =0 c;, =0 show the output of Step ¢t. In column
c, =1 cs =0 e =1 Coy = co =10 (1), we show the output for ¢; for each
cs =1 ¢1o=0 Ca0 = Ci (8) =0 i. In column (2), we show entries for
Ce = Cs C1o = €y C21 = Cao 3 =1 even ¢. Despite the fact that our pseu-
c; =0 ca=1 Cos = Cyy  Ca=1 cs =1 docode for A does not recalculate final
Cs = ¢ Crg = Cy  C2=10 12 =0 ¢y =1 (i.e., constant) values, we show those
co =0 Cis = Cig (3) Coo =1 Crog =1 previously calculated values in each col-
c1o=20 Coo = C15 Cos = 1 Cy =1 umn for uniformity of appearance.
Cli=Clo Cpy =y =0 (9) Cos = 1 In columns (3) through (6), we show the
Cla = Ci1 Coy = Cyy B = 0 Cos = 1 output for even multiples of 2¢ for ¢ =
cs =1 Cos = Cyy  C16 =1 ¢ =1 Cor =1 1,2,3,4. In columns (7) through (11),
cy =1 Cog = Cog €24 = Ci6 ¢ =1 Cog = 1 we show the output for odd multiples of
Cis = C e =y =0 G0=0 1 ol p=4321,0.
Cie = Ci5 €30 =10 (4) =1
Ci7 = Ci6 (2) C1s =
Cis = Ci7 €0 =0 Caz =
Cro = Cis g =1 Cog =
Coo = Cro C3z =0 Cz =1
Cor = Con (5) (10)
222 : 221 o =0
23 — 22
Cay = Co3 Coz = 0
(6)
Cas = Coy
Ca6 = Ca5
Ca7 = Cgs
Cog = Car
Cag = Cog
C30 = Ca9
3 =1
C3o =0

The Functions A



