
LALR Parsing Handout 3

We use “$” as both the bottom of stack symbol and the end of file symbol. The instantaneous description, id,

is a string consisting of the stack, from bottom to top, followed by the current (remaining) input file starting

with the next symbol, followed by the current output file. The symbols in the stack above the bottom are

alternating stack states and grammar symbols, where the stack states are written as subscripts for clarity. The

last symbol in the input file will be $.

In all of the LALR parsers given below, there will be two special stack states, 0, the state of the empty

stack, and 1, the state when the start symbol is just above the bottom. The stack is initially $0, and the last

configuration of the stack is always $0S1, where S is the start symbol. We give several examples of simple

LALR parsers. When we write a grammar, we include stack states as subcripts.

Example 1: Dangling else

The following LALR parser demonstrates how the “dangling else” can be resolved. Let L be the language

generated by the ambiguous CF grammar below, with start symbol S.

1. S → a2

2. S → w3S4

3. S → i5S6

4. S → i5S6e7S8

Here are the ACTION and GOTO tables.

a w i e $ E

0 s2 s3 s5 1

1 halt

2 r1 r1 r1 r1 r1

3 s2 s3 s5 4

4 r2 r2

5 s2 s3 s5 6

6 s7 r3

7 s2 s3 s5 8

8 r4 r4

Problem 1. Which entry of the ACTION table resolves the dangling else problem?

Row 6, column “e.” The grammar permits the entry r2, but the conventional resolution of the dangling

else problem requires the entry s7.

We now show the action of our parser on the input string iiwaea.

1

stack input output action

$0 iiwaea$

$0i5 iwaea$ s5

$0i5i5 waea$ s5

$0i5i5w3 aea$ s3

$0i5i5w3a2 ea$ s2

$0i5i5w3S4 ea$ 1 r1

$0i5i5S6 ea$ 12 r2

$0i5i5S6e7 a$ 12 s7

$0i5i5S6e7a2 $ 12 s2

$0i5i5S6e7S8 $ 121 r1

$0i5S6 $ 1214 r4

$0S1 $ 12143 r3

$0S1 $ 12143 halt

Example 2: Allowing a List of Statements

The body of a while statement, or the scope of an if-condition or else could be a statement, but it could also

be a list of statements enclosed in delimiters, such as braces, such as given in the following grammar.

1. S → a2

2. S → w3S4

3. S → i5S6

4. S → i5S6e7S8

5. S → {9L10}11

6. L → L10S12

7. L → λ
a w i e { } $ S L

0 s2 s3 s5 s9

1 halt

2 r1 r1 r1 r1 r1 r1 r1

3 s2 s3 s5 s9 4

4 r2 r2 r2 r2 r2 r2 r2

5 s2 s3 s5 s9 6

6 r3 r3 r3 s7 r3 r3

7 s2 s3 s5 s9 8

8 r4 r4 r4 r4 r4 r4 r4

9 r7 r7 r7 r7 r7 10

10 s2 s3 s5 s9 s11 12

11 r5 r5 r5 r5 r5 r5 r5

12 r6 r6 r6 r6 r6 r6

Problem 2. Fill the missing entries in rows 0 through 8.

The rest of our examples are based on algebra. We use just one identifier, x, to represent all identifiers,

2

just to keep the tables shorter. In Example 8, we ask how we would modify Examples 2. through 8. to allow

infinitely many identifiers.

Example 3: Left Associativity of an Operator

The following grammar generates an algebraic language with one operator, subtraction, and one variable, x.

We use E (for expression) as the start symbol. Subtraction is left-associative. For example, 8− 4− 2 is 2, not

6.

1. E → x2

2. E → E −3 E4

Here are the ACTION and GOTO tables.

x − $ E

0 s2 1

1 s3 halt

2 r1 r1

3 s2 4

4 r2 r2

Problem 3. Which entry of the ACTION table guarantees that subtraction is left-associative?

Row 4, column “−”

Example 4: Binary and Unary Minus Sign

In computer languages, −− 4 means 4, although your algebra teacher would not like it. How does an LALR

parser distinguish between the two operators, and enforce the priority of the unary operator?

1. E → x2

2. E → E −3 E4

3. E → −5E6

Here are the ACTION and GOTO tables.

x − $ S

0 s2 s5 1

1 s3 halt

2 r1 r1

3 s2 s5 4

4 r2 r2

5 s2 s5 6

6 r3 r3

Problem 4. Walk through the steps of the parser with the input string x−−x.

3

stack input output action

$0 x−−x$

$0x2 −− x$

$0E1 −− x$ 1 r1

$0E1−3 −x$ 1

$0E1 −3 −5 x$ 1

$0E1 −3 −5x2 $ 1

$0E1 −3 −5E4 $ 11 r1

$0E1 −3 E4 $ 113 r3

$0E1 $ 1132 r2

$0E1 $ halt

Example 5: Right Associativity of an Operator

Exponentiation is right associative. For example, 23
2

= 512, not 64. We’ll use “∧” for exponentiation.

1. E → x2

2. E → E ∧3 E4

x ∧ $ E

0 s2 1

1 s3 halt

2 r1 r1

3 s2 4

4 s3 r2

Problem 5. Which entry of the ACTION table guarantees that exponentiation is right-associative?

Row 4, column “∧”

Example 6: Precedence of Operators

Multiplication has precedence over subtraction. For example, 7 − 3 ∗ 2 is 1, not 8. Consider the language

generated by the CF grammar:

1. E → x2

2. E → E −3 E4

3. E → E ∗5 E6

4

x − ∗ $ E

0 s2 s3 1

1 s3 s5 halt

2 r1 r1 r1

3 s2 4

4 r2 s5 r2

5 s2 6

6 r3 r3 r3

Problem 6. Which two entries guarantee that multiplication has precedence over subtraction?

Row 4, column “∗” and row 6, column “−”

Example 7: Parentheses

1. E → x2

2. E → E −3 E4

3. E → (5E6)7

x − () $ E

0 s2 s5 1

1 s3 halt

2 r1 r1 r1

3 s2 s5 4

4 r2 r2 r2

5 s2 s5 6

6 s3 s7

7 r3 r3 r3

Unlike the previous examples, this grammar is unambiguous, so there is no ambiguity to resolve

Example 8: Combining Examples 3, 4, 5, 6, and 7.

Problem 7. Design an LALR parser for a grammar which has all of the above operators. Let’s throw in

addition, just for fun!

The operators are addition, subtraction, multiplication, exponentiation, and negation. Negation has the

highest precedence, followed by exponentiation, followed by multiplication. Addition and subtraction are of

equal and lowest precedence. Addition, subtraction, and multiplication are left associative, while exponentia-

tion is right-associative.

1. E → E +2 E3

2. E → E −4 E5

3. E → E ∗6 E7

5

4. E → E ∧8 E9

5. E → −10E11

6. E → (12E13)14

7. E → x15

x + − ∗ ∧ () $ E

0 s15 s10 s12 1

1 s2 s4 s6 halt

2 s15 s10 s12 3

3 r1 r1 s6 r1 r1

4 s15 s10 s12 5

5 r2 r2 s6 s8 r2 r2

6 s15 s10 s12 7

7 r3 r3 r3 s8 r3 r3

8 s15 s10 s12 9

9 r4 r4 r4 s8 r4 r4

10 s15 s10 s12 11

11 r5 r5 s6 s8 r5 r5

12 s15 s10 s12 13

13 s2 s4 s6 s8 s14

14 r6 r6 r6 r6 r6 r6

15 r7 r7 r7 r7 r7 r7

Example 9: Generating Identifiers

Suppose an identifier must start with a letter and can contain any combination of letters and numerals. Let’s

say identifiers are case-insensitive. Note that the language of all identifiers is regular.

Problem 8. Modify the grammar given in Example 7 to allow for any identifiers. Your grammar should

generate strings such as

x4

george

tom3-(sam52-x0a43z2)

Hint: Your grammar needs more identifiers. I did not write stack states for this grammar.

1. E → V

2. E → E − E

3. E → (E)

4. V → LM

5. L → a|b|c|d|e|f |g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z

6. M → λ

7. M → DM

8. M → LM

9. D → 0|1|2|3|4|5|6|7|8|9

6

