
Reductions and NP–Completeness

Reductions

If L1, L2 are languages over the alphabets Σ1 and Σ2, respectively, a reduction from L1 to
L2 is function R : Σ∗

1 → Σ∗
2 such that R(w) ∈ L2 if and only if w ∈ L1. We write L1 ≤R L2.

We say “L1 reduces to L2.”
1 If R is P–time, we write L1 ≤P L2. Reductions are used

often in practice to shortcut calculations. A problem that can be easily reduced to an easy
problem is easy.

Remark 1 If L1 ≤P L2 and L2 is P, then L1 is P.

Instances. A reduction from a problem to another need only be defined on instances of
of the first problem. since we can let R(w) = λ if w is not an instance. Reductions are
typically defined only on instances.

A language L is in the class NP–time (or simply NP) if there is a non-deterministic
machine M which which accepts L is time which is polynomial in the number of input bits
of the given instance of L.2 The computation tree of M given an input w is a binary tree
whose height is a polynomial function of |w|, the number bits required to write w. The
input is accepted by if M is in an accepting state at at least one leaf of the computation.
Thus, L can be decided by a deterministic machine in exponential time, by simply exploring
the entire computation tree. But could we determine the answer in polynomial time? That
is an unsolved problem, the famous “P = NP” problem.

Verification Definition of NP

A language L is NP if and only if there is some machine V and some integer k such that:

1. For every w ∈ L there exists a string c, called a certificate for w, such that V accepts
the string (w, c) in O(nk) time, where n = |w|.

2. If w /∈ L and c is any string, V does not accept the string (w, c).

NP–Completeness

We define a language L to be NP–complete if

1. L ∈ NP, and

2. Every NP language reduces to L in polynomial time.

1We usually mean that R is recusive, i.e. computable.
2We can assume that at any step, M has at most two legal choices.

1

Theorem 1 If there is any language which is both P–time and NP–complete, then P =
NP.

Proof: Suppose that there is a language L1 which is both P–time and NP–complete. Let
Let L2 be any NP language Then L2 ≤P L1 by the definition of NP-completeness. Since
L1 is P, L2 is P by Remark rem: P implies P. ✷

Boolean Satisfiability

Many NP–complete problems (languages) have been identified, and the number grows
constantly. The first such problem identified is SAT, Boolean satisfiability, proved NP–
complete by Theorem ??, the Cook Levin theorem. Using that theorem and Theorem ??,
thousands (or more) additional NP–complete problems have been found.

Let Bool be the languages of all Boolean expressions, defined to be expressions consisting
of variables and operators, where all variables have Boolean type and all operators are
Boolean. To shorten our notation, we use “+” for or , “·” for and and “!” for not. An
assignment of a Boolean expression E is an assignment of truth values (there are only two
truth values, true = 1 and false = 0) to each variable that appears in E. An assignment is
satisfying if given those values, E is true. E is satisfiable if it has a satisfying assignment,
otherwise E is a contradiction. For example, x·!x is a contradiction, since its value is false
regardless of the assigned value of x, while x·!y is satisfiable, because the assignment x = 1,
y = 0 is satisfying. Let SAT⊆BOOL be the satisfiable expressions. We also write SAT to
be the problem of determining whether E ∈ SAT. Any satisfying assignment of a E is a
certificate which verifies that E ∈ SAT.

Theorem 2 (Cook-Levin) SAT is NP–complete.

The proof of Theorem ?? is long, but straightforward. You can find it in books or on the
internet.

Theorem 3 If L1 is NP-complete and L2 is NP, and there is a polynomial reduction R1

of L1 to L2, hence L2 is NP–complete.

Proof: We need only prove that every NP language reduces to L2 in polynomial time. Let
L3 ∈ NP. Since L1 is NP-complete, there is a polynomial time reduction R2 of L3 to L1.
The composition R2 ◦R1 is a polynomial time reduction of L3 to L2. ✷

Here is a reduction chain of NP–complete problems.

SAT ≤P 3− SAT ≤P IND ≤P SubsetSum ≤P Partition

These problems and reductions are described below.

2

k-SAT

A Boolean expression is in CNF, conjuctive normal form if it is the conjunction (and) of
clauses, each of which is the disjunction (or) of terms, each of which is either a variable or
the negation (not) of a variable. CNF ⊆ BOOL is the set of all Boolean expressions written
in conjunctive normal form, while k-CNF ⊆ CNF is the subset where each clause has at
most k terms.

Note that k-CNF ⊆ CNF ⊆ BOOL.

We define k-SAT = k-CNF ∩ SAT.

Theorem 4 For any k ≥ 3, k-SAT is NP-complete.

Theorem 5 2-SAT is P–time.

We postpone the proofs of Theorems ?? and ??.

Independent Set

An instance of the independent set problem, abbreviated IND, is an ordered pair (G,K)
where G is a graph and K is a positive integer. We say a set of vertices of G is independent
if no two are connected by an edge. A solution (certificate) of (G,K) is an independent
set of K vertices of G, thus IND is NP by the verification definition of P. We give a
polynomial time reduction R of 3-SAT to IND. We define R only on 3-CNF, the language
of instances of 3-SAT. By Theorem ??, IND is NP-complete.

Subset Sum

An instance of the subset sum problem consists of a sequence of numbers σ = x1, . . . xk,
together with a number K. That instance has a solution if there is some subsequence of σ
whose sum is K. Without loss of generality, we assume that the xk are positive. A subset
of sum K is an easily verified certificate, hence subset sum is NP. We give a polynomial
time reduction of IND to subset sum, and thus subset sum is NP-complete.

Partition

An instance of the partition problem is a sequence τ = y1, . . . yk of positive numbers. A
solution to τ is a subsequence of τ whose sum is half the sum of the terms of τ , which is an
easily verified certificate. We give a polynomial time reduction of subset sum to partition,
and thus partition is NP-complete.

3

Let E = C1 ∗ C2 ∗ · · · ∗ CK be a Boolean expression in 3-CNF form. We can assume each
clause has exactly three terms, since we can pad a clause with duplicate terms. For example,
we can replace x+ y with x+ x+ y, and x with x+ x+ x.

Let Ci = ti,1 + ti,2 + ti,3, the disjunction of three terms. Thus, E contains 3K terms.

Define a graph GE whose vertices are {xi,j : 1 ≤ i ≤ j, j = 1, 2, 3}. That is there is a 1-1
correspondence between terms of E and vertices of GE . The vertices vi,1, v+ i, 2, vi,3 form a
3-clique, a complete subgraph of GE . Besides the clique edges, GE has contradiction edges,
namely an edge from any vi,j to vi′,j′ if ti,j contradicts ti′,j′ .

Theorem 6 E is satisfiable if and only if GE has an independent set of K vertices.

We give context-free grammars for both BOOL and 3-CNF.

Unambiguous Context-free grammar for BOOL

The start symbol is S.

S → E = E | E ⇒ E | E
E → E + T | T
T → T · F | F
F → !F | V | (S)
V → AP
P → AP | NP | ǫ
A → a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z
N → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Ambiguous Context-free grammar for BOOL

It is more practical to give an ambiguous grammar for BOOL, since parse trees are simpler.
The start symbol of this grammar is E, for “expression.” For simplicity, we use the symbol
id to stand for any identifier.
E → E + E
E → E · E
E → !E
E → E ⇒ E
E → E = E
E → (E)
E → id

Unambiguous Context-free grammar for 3-CNF

The start symbol is E.

4

E → E · C | C

C → (T + T + T)

T → !V | V

V → AP

P → AP | NP | ǫ

A → a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z

N → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Theorem 7 3-SAT is NP-complete.

Theorem ?? is proven by giving a polynomial time reduction of SAT to 3-SAT. We will not
give the details of this reduction, but we discuss some of the issues.

Two Boolean expressions are usually said to be equal if they have the same variables and
every assignment of those variables satisfies either both expressions or neither expression.
For example, the expression x · (y+ z) is equal to the expression x ·y+x · z. It is impossible
to find a reduction R of SAT to 3-SAT which maps every boolean expression of BOOL to
an equal Boolean expression in 3-CNF. Our reduction must make use of new variables.

Clauses are not independent. For example, let E be the expression in 2-CNF form:

(x+ y) · (x+!y) · (!x+ y) · (!x+!y)

Each of the four clauses is satisfiable. In fact, the conjunction of any three of those clauses
is satisfiable. But E, the conjunction of all four clauses, is not satisfiable.

Let E1 be the Boolean expression (x + y + z + w) · F , where F is satisfiable. Clearly
x+y+z+w is satisfiable, but E1 may not be. For example, x, y, z, and w could all appear
somewhere in F , and it could be that the every satisfying assignment of F assigns false to
all four of those variables. We must find a Boolean expression E2 which is equivalent to E1

in a weaker way, namely that E2 is satisfiable if and only if E1 is satisfiable.

We use the a new variable which must have a name that does not appear in F . Let u be
that new variable. Now let E2 be the Boolean expression (x+ y + u) · (!u+ z + w) · F . If
F is 3-CNF, then E2 is 3-CNF.

We see that E1 and E2 are not equal, because E2 has more variables that E1, but they are
equivalent in the weaker sense defined above: suppose I1 is satisfiable. Then there is an
assignment of the variables of E1 such that at least one of the four variables x, y, z, and w
is assigned true. The same assignment, augmented by an assignment of u, satisfies E2. To
prove this, we consider two cases.

Case I: Either x or y is assigned true. Then assign u the value false. The clause (x+ y+u)
is true because x is true, while the clause (!u + z + w) is true because u is false. The
expression F is still true, since the assignments of its variables have not changed.

Case II: Either z or w is assigned true. Then assign u true, making the first clause true.
The second clause is also true, and F is still true as before.

5

On the other hand, suppose E1 is a contradiction. Then x, y, z, and w must all be assigned
false. Whatever the assignment of u, either the first or the second clause must be false,
hence E2 is a contradiction.

Example

Let e be the Boolean expression (x1+!x2) ⇒!x1 ∗ x3. We will compute R(e). Here is the
parse tree for e, using the ambiguous -free grammar for Lbool.

EE

E

EE =>

+ * EE

E E

x1

x2

x3

x1

u3

u1

u2 u4

u5

! !

Our next step is to translate the parse tree into the conjunction of clauses:

(u2 = x1 + u3) · (u3 =!x2) · (u5 =!x1) · (u4 = u5 · x3) · (u1 = u2 ⇒ u4) · (u1)

Finally, we translate into 3-CNF form by replacing each of those clauses by the conjunction
of CNF clauses of at most three terms:

(u1) ·
(u1 + u2) · (u1+!u4) · (!u1+!u2 + u4) ·
(u2+!x1) · (u2+!u3) · (!u2 + x1 + u3) ·
(u3 + x2) · (!u3+!x2) ·
(u5 + x1) · (!u5+!x1) ·
(u4+!u5+!x3) · (!u4 + u5) · (!u4 + x3)

If we are required to have exactly three terms in each clause, we can “pad” each clause of
length less than three by duplicating terms. For example, we can replace (u2+!x1) with
(u2 + u2+!x1), and (u1) with (u1 + u1 + u1).

6

Other NP-Complete Problems

The most common method of proving that a given problem (i.e., language) is NP-complete
is to use Theorem ??, where L1 is taken to be a problem (i.e., language) already known
to be NP-complete. The problem 3-SAT is one of the more popular choices used for this
purpose.3

The Independent Set Problem

Given a graph G an independent set of G is defined to be a set I of vertices of G such that
no two members of I are connected by an edge of G. The order of I is defined to be its
size, i.e.., simply how many vertices it contains.

An instance of the independent set problem is 〈G〉〈k〉, where G is a graph and k is an
integer. The question is, ”Does G have an independent set of order k?”

The language IND We define IND to be the set of all 〈G〉〈k〉 such that G has an
independent set of order k. We prove IND is NP-complete by reduction of 3-SAT to IND.
using Theorem ??

Subset Sum

Informally, the subset sum problem is whether there is a subset of a given set of items
whose total is a given number. Formally, an instance of the subset sum problem is a finite
sequence x1, . . . xk of non-negative numbers and a single number B. This instance is a
member of the language LSS if there is some subsequence of {xi} whose sum is B.

We prove subset sum is NP, by reduction of IND to subset sum, using Theorem ??.

Theorem 8 IND is NP complete.

Proof: Let E ∈ 3-SAT. Then e = C1 ·C2 · · · · ·Ck, where Ci = (ti,1 + ti,2 + ti,3), where each
ti,j is either x or !x, where x is a variable.

We now define a graph G[E] = (V,E), where V = {vi,j : 1 ≤ i ≤ k, 1 ≤ j ≤ 3} is the set of
vertices of G[e], and E the set of edges of G[E], as follows:

1. For each 1 ≤ i ≤ k, there is an edge from vi,j to vi,j′ for all 1 ≤ j < j′ ≤ 3. Call these
short edges.

2. If ti,j = x and ti′,j′ = !x for some variable x, there is an edge from vi,j to vi′,j′ . Call
these long edges.

3The precise definition of the problem described in this handout as 3-SAT differs from book to book, but

they are all equivalent.

7

3. There are no other edges.

Let R(e) = G[e], k) We now show that R(e) ∈ IND if and only if e is satisfiable. For each i,
let Ki be the subgraph of G[e] consisting of the three vertices vi,1, vi,2, vi,3, and the edges
connecting them. We call this a 3-clique.

Suppose G[e], k ∈ IND. Let I ⊂ V be an independent set of of size k. Since Ki is a 3-clique,
and the number of such cliques is equal to k, exactly one member of I must lie in each Ki.

We define an assignment of e. If vi,j ∈ I and ti,j = x for some variable x, assign the
value true to x, while if ti,j =!x, assign false to x. Assign all remaining variables arbitrary
Boolean values. This assignment is well-defined, for if vi,j , vi′,j′ ∈ I for i 6= i′, there can
be no edge between those two vertices, which implies that ti,j does not contradict ti′,j′ .
Furthermore, each clause has one term which is assigned true, hence each clause is assigned
true, and we thus the assignment is satisfying.

Conversely, suppose that there is a satisfying assignment of e. That means each clause Ci

must contain one term, say ti,j[i] which is true under the assignment. Let I =
{

vi,j[i]
}

⊆ V .

No two elements of I are in the same clique Ki, hence there is no short edge connecting
them, and there can be no long edge connecting them because vi,j[i] and vi′,j[i′] are both
assigned true and hence cannot contradict each other. Thus I is an independent set. ✷

Example

A non-trivial example would have at least eight clauses, but I’ll keep it simple. Let E be
the 3-CNF expression

(x+ y + z) · (!x+!y + w) · (y+!z+!w) · (!y + z+!w)

Then k = 4. The following diagram illustrates G[E]. The vertices of I are circled in red.
The satisfying assignment shown is x = false, y = true, w = false, while z can be assigned
either true or false.

y

!w

!w

!y

!y
y

!z

z

x !x

w

z

(x+y+z) (!x+!y+w) (y+!z+!w) (!y+z+!w)

C1 C2

K 3

K 2

K 4

K 1

C3 C4

8

Theorem 9 The subset sum problem is NP-complete.

Proof: Trivially, the subset sum problem satisfies the verifiability definition of NP.

We reduce the independent set problem to the subset sum problem. Suppose 〈G〉〈k〉 is
an instance of the independent set problem, where G has n vertices and m edges. Let
e0, . . . em−1 be the edges of G and vm . . . vn+m−1 the vertices of G. Define R(〈G〉〈k〉) to be
the instance of the subset sum problem w = (x0, x1, . . . xn+m−1, B) where

• xi = 4i for 0 ≤ i < m

• For m ≤ i < n+m, let Ji = {j : vi is an endpoint of ej}, then xi = 4m +
∑

j∈Ji
4j .

• B = k4m +
∑

0≤j<m 4j

For 0 ≤ j < m, xj corresponds to the edge ej, while for m ≤ i < m+ n, xi corresponds to
the vertex vi.

We need to prove R is a reduction of IND to Subset Sum. Suppose I ⊆ V is an independent
set of k vertices of G. Let

S = {xj : 0 ≤ j < m and no endpoint of ej is in I} ∪ {xi : m ≤ i < n+m and vi ∈ I}

We need to show that
∑

S, the sum of the members of S, equals B. Since |I| = k, the
coefficient of 4m is k. An ej is adjacent to either just one member of I or none. If ej is
adjacent to vertex vi ∈ I, then the coefficient of 4j in xi is 1, matching that of B. Otherwise,
S contains xj, which is simply 4j , hence

∑

S = B.

Conversely, suppose there is a subset S of the sequence whose sum isB. Let I = {vi : xi ∈ S}.
Since the coefficient of 4m in B is k, I must contain exactly k vertices. Since the coefficient
of every xj in B is 1, no two members of the I can be adjacent, hence I is a solution to the
subset sum problem. ✷

Example

Let G be the graph shown below, and let k = 3.

e0 e1

e3 e5

v10 v11 v12

v13 v14 v15 v16e7 e8 e9

e2 e4 e6

We show the reduced instance of the subset sum problem, where the xi are written in base
4.

9

x0 = 1
x1 = 10
x2 = 100
x3 = 1000
x4 = 10000
x5 = 100000
x6 = 1000000
x7 = 10000000
x8 = 100000000
x9 = 1000000000
x10 = 10000001101
x11 = 10000110011
x12 = 10001000010
x13 = 10010000100
x14 = 10110011000
x15 = 11101100000
x16 = 11000000000
B = 31111111111

The graph below shows an independent set I of vertices of order 3, together with the set
of edges which are not adjacent to members of I.

e0 e1

e3 e5

v10 v11

v13 v15e7 e8 e9

e2 e4 e6

v12

v14 v16

Finally, we show the members of the subsequence corresponding to the chosen vertices and
edges.

x0 = 1
x2 = 100
x5 = 100000
x12 = 10001000010
x14 = 10110011000
x16 = 11000000000

B = 31111111111

10

Subset Sum and Partition

The subset sum problem can be shown to be NP-complete by reducing IND to subset sum.
We can then show that the partition problem is NP-complete by reducing Subset Sum to
Partition.

Recall that an instance of the Subset Sum problem is a number followed by a sequence of
positive numbers, followed by one number, K, that is, (x1, x2, . . . xm,K), and that instance
is in Lsubs if there is some subsequence of x1, . . . xm whose total is K. Let Lsubs be the
language of all instances of the problem which have a solution.

Similarly, an instance of the Partition problem is a sequence of positive numbers, namely
〈y1, . . . yℓ〉, and there is a solution to that instance if and only if there is some subsequence
of y1, . . . yℓ whose sum is half the total, i.e. 1

2

∑ℓ
j=1 yj . Let Lpart be the language of all

instances of the problem which have a solution.

The partition problem is trivially in the class NP, since the solution, if any, can be verified
in polynomial time.

Reduction

Given an instance IK = (x1, x2, . . . xm,K) of Subset Sum, let A =
∑m

i=1 xi. Let R(IK) = IP
be the following instance of Partition:

IP = (x1, . . . xm,K + 1, A−K + 1)

That is, IP = (y1, . . . yℓ) where ℓ = m + 2, yi = xi for i ≤ m, ym+1 = K + 1, and
ym+2 = A−K + 1.

We need to prove that this reduction works, that is, that IP ∈ Lpart if and only if IK ∈ Lsubs.
There are thus two directions to the proof.

Note that the sum of the items of IP is 2A+ 2, and half of that is A+ 1.

Suppose that IK ∈ Lsubs. Then there is a subsequence of {xi} whose total is K. The items
of this subsequence, together with A−K + 1, total A+ 1, and thus IP ∈ Lpart.

Conversely, suppose some subsequence S of K + 1, x1, . . . xm, L + 1 has total A + 1. That
subsequence cannot contain both K + 1 and A − K + 1, since their total exceeds A+1.
Similarly, and by symmetry, S must contain either K + 1 or A −K + 1. Without loss of
generality, S contains A −K + 1. The remaining members of S constitute a subsequence
of x1, . . . xm whose total is K, and we are done.

Conversely, suppose there is a subset B of {xi} whose total is K. Then B ∪ {A−K + 1}
is a subset of the sequence {yj} whose total is A+ 1, and we are done.

11

