
Reductions-2

We will sometimes write the Boolean constants false and true as 0 and 1. Recall that an
NP language L is defined to be NP–complete if every NP language is reducible to L in
polynomial time.

Boolean Satisfiability (SAT)

A Boolean expession E is satisfiable if it has a satisfying assignment. That is, if X is the
set of all variables of E, there is an function (assignment) X → {0, 1} such that, with those
truth values assigned to the variables, the valuation of E is true. Note that E is satisfiable
if and only if E is not a contradiction. We write SAT for the set of satisfiable Boolean
expressions.

Theorem 1 (Cook Levin) SAT is NP–complete.

Theorem 2 (Bootstrap Theorem) If L1 is NP-complete and L2 is NP and there is a

P–time reduction of L1 to L2 then L1 is NP-complete.

Instances. A reduction from a 0/1 problem L1 to a 0/1 problem L2 need only be defined
on instances of L1 , since we define R(w) = λ if w is not an instance of L1 Reductions
found in the literature or on the internet are typically defined only on instances. For ex-
ample, let BOOL be the language of all Boolean expressions, over an appropriate alphabet.
An assignment of an expression E ∈ BOOL is a mapping of the set of all variables which
appear in E to the Boolean alphabet {0, 1}, where 0 means false and 1 means true. The
assignment is satisfying if replacing each variable by its assigned truth value causes E to
become true. If E has a satisfying assignment, we call it satisfiable, otherwise E is a con-
tradiction. SAT⊆BOOL is the set of all satisfiable Boolean expressions, while an instance
of the Boolean satisfiability problem is any Boolean expression. A Boolean expression is
in conjuctive normal form (CNF) if it is the conjunction (and) of clauses, each of which is
the disjunction (or) of terms, each of which is either a variable or the negation (not) of a
variable. CNF⊆BOOL is the set of all Boolean expressions written in conjunctive normal
form, while k-CNF ⊆ CNF is the subset of CNF where each clause has k terms.

A language L is in the class P–time (or simply P) if there is some constant k and some
machine which decides L in O(nk) time.

A problem P is P–time if the language of all true instances of P is P–time. For example,
CNF and 3-CNF are both P–time. The CYK algorithm demonstrates that every context-
free language is P–time. A language L is in the class NP–time, usally called simply NP,
if it is recognized in O(nk) time by some non-deterministic machine, where n is the number
of bits in the input. Every deterministic machine is also a non-deterministic machine, thus
P ⊆ NP. The converse is an open question.

1



Verifier Definition of NP

There is an equivalent definition of NP which is much easier to work with, the verifier
definition, given below. Let L ⊆ Σ∗ be a language. Then L is NP if and only if there is an
integer k and a program V (called the verifier) such that:

1. The input of V is an ordered pair of strings (w, c) and V executes in O(nk) time for
some k, where n is the length of w, and the output of V is Boolean.

2. If w ∈ L there is a string c, called a certificate, or witness for w, such that, with input
(w, c), V returns 1.

3. If w /∈ L, V returns 0 with input (w, c) for any string c.

NPCompleteness

We define a language L to be NP–complete if the following conditions hold.

1. L is NP,

2. . If L2 is any NP language, there is a polynomial time reduction of L2 to L .

Is P = NP?

Theorem 3 If there is any language which is both P–time and NP–complete, P = NP.

Proof: We already have P ⊆ NP. Let L1 be both P–time and NP–complete. We need
to show that any L2 ∈ NP is in P. Since L1 ∈ P, there is a machine M1 that decides L1

in polynomial time. Since L1 is also NP-complete, there is a polynomial time reduction of
L2 to L1 computed by some machine M2. Let the output of M2 be the input of M1 The
combined machine decides L2 in polynomial time. ✷

Theorem 4 below shows that every NP problem is decidable.

Theorem 4 Any NP problem can be decided by a deterministic machine with polynomial

memory in exponential time.

Guide Strings. Recall the story of Ariadne, daughter of King Minos, rescuing Theseus
from the Labyrinth, where he and eleven other youths and maidens were to be devoured
by the Minotaur, who was half man and half bull. She brought him a sword, and he killed
the Minotaur. Fortunately, she had tied one end of a string to the entrance and carried the
other end to Theseus, and they were able to find their way out of the Labyrinth. That was
the first guide string!

2



Proof: (Of Theorem 4) If L is recognized by a non-deterministic machine M in polynomial
time, M can accept a string w ∈ L deterministically in polynomial time by using a guide
string, a sequence of instructions which tell which choice to make at each step of the
computation. Given an arbitrary string w ∈ Σ∗, where Σ is the alphabet of of L, any such
guide string must have polynomial length. We can assume each guide string is written only
in binary. We need only try every possible guide string of that length. Each computation of
M guided by a guide string takes polynomial time and polynomial memory, and the guide
strings can be tried in canonical order by using only polynomial memory to keep track of
the last one tried. If none work, w /∈ L. The number of possible guide strings of length m
is 2m, hence exponential time is sufficent for this task. ✷

Consequences of P = NP

If P = NP, there is no one-way function, which implies that cryptographic systems which
rely on functions believed to be one-way can be broken in polynomial time.

Chain of Reductions

There are thousands (or more) NP-complete problems known, but we will concentrate of
five of them.

1. SAT, the satisfiable Boolean expressions.

2. 3-SAT, the satisfiable expressions in 3-CNF form.

3. IND, the independent set problem.

4. SS, or Subset Sum.

5. Partition.

We can prove the following reductions.

SAT ≤P 3− SAT ≤P IND ≤P SS ≤P Partition

3


