University of Nevada, Las Vegas Computer Science 456/656 Spring 2022 Assignment 3: Due Monday March 7 2022

Name:_____

You are permitted to work in groups, get help from others, read books, and use the internet. You will receive a message from our graduate assistant telling you how to turn in the assignment.

1. Which of the following Boolean expressions are satisfiable? Show the truth tables.

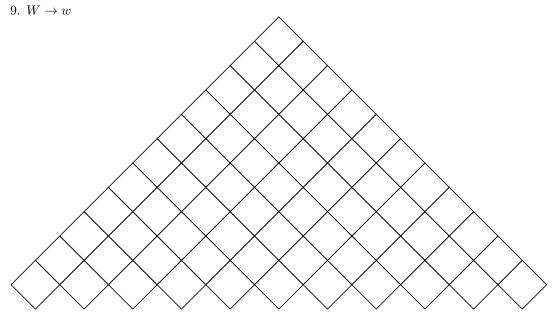
(a)
$$x + ! x$$
 (b) $x * ! x$

(c)
$$(x + y) * (! x + ! y)$$
 (d) $!(x \Rightarrow y) \Rightarrow ! y$

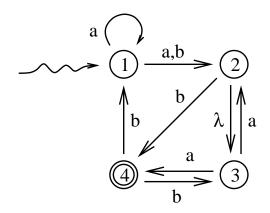
(e)
$$!(z \Rightarrow (! x * y))$$
 (f) $((x * ! y) * ! z) * (x \Rightarrow (y + z))$

2. Draw a diagram for a DPDA which accepts the language over $\{a, b\}$ of all strings with equal numbers of a's and b's. Assume that the input string contains the end-of-file symbol .

- 3. Fill in the matrix below. Each answer is T or F, not O.
 - A Known to be \mathcal{P} -TIME.
 - B Known to be \mathcal{NP} .
 - C Known to be \mathcal{NP} -complete.
 - D Known to be $co \mathcal{NP}$.
 - E Known to be \mathcal{P} -space.
 - F Known to be decidable.
 - G Known to be undecidable.


	A	В	С	D	Е	F	G
Regular grammar membership	Т	Т	F	Т	Т	Т	F
CF grammar membership							
CF grammar equivalence							
SAT	F	Т	Т	F	Т	Т	F
3-SAT							
2-SAT							
4-SAT							
Independent set							
Partition							
Knapsack							
Rush Hour							
co-Rush Hour							
Polygon placement							
Mover's problem							
Factoring							
Traveling Salesman							
DFA equivalence							
NFA equivalence							
Regular expression equivalence							
Halting problem							
Primality							

Definitions of some problems and languages.


- Polygon placement. A given set of polygons can be placed in a given bigger polygon without overlap.
- Mover's problem. A given set of polygons, starting outside the room, can be moved into a room with a door, such that no overlap is permitted at any time during the move.
- Factoring. Given binary numerals $\langle n \rangle$ and $\langle a \rangle$, n has a prime factor greater than a.
- Rush Hour. Given a configuration of the cars in a parking lot, the red car can be moved out.
- co-Rush Hour. Given a configuration of the cars in a parking lot, the red car cannot be moved out.
- Primality. A given binary numeral represents a prime number.

- 4. The following CF grammar generates all non-empty strings over $\{a, b\}$ which have equal numbers of *a*'s and *b*'s. However, it is not CNF. Give a CNF grammar for the same language.
 - $S \to aSbS$
 - $S \to abS$
 - $S \to aSb$
 - $S \to ab$
 - $S \to bSaS$
 - $S \to bSa$ $S \to baS$
 - $S \rightarrow 0a$
 - $S \to ba$

- 5. Use the CYK algorithm to decide whether the string *iwiiaewiaea* is generated by this CNF grammar by filing in the diagram below. Be sure to complete every cell.
 - 1. $S \rightarrow a$
 - 2. $S \rightarrow WS$
 - 3. $S \rightarrow IS$
 - 4. $S \to XY$
 - 5. $X \rightarrow IS$
 - 6. $Y \to ES$
 - 7. $I \rightarrow i$
 - 8. $E \rightarrow e$

6. Give a regular grammar for the language accepted by the following NFA.

7. Find a DFA equivalent to the following NFA. I was a mistake to give you problem 7 on the homework, since its solution is too complex. Insead, I am replacing it with a shorter version, below. The DFA should have 2⁴ states (instead of 2⁵ as before) but only half of those are reachable, so the resuling minimal DFA has 8 states.

8. Give a \mathcal{P} -TIME reduction of the subset sum problem to the partition problem.