University of Nevada, Las Vegas Computer Science 456/656 Spring 2022
Assignment 4: Due Wednesday March 30 2022

Name:

You are permitted to work in groups, get help from others, read books, and use the internet. You will

receive a message from our graduate assistant telling you how to turn in the assignment.

Throughout this assignment, you may assume that a language is recursively enumerable if and only if it
is accepted by some machine. Recall that “L is recursively enumerable (RE)” means that there is a machine

that enumerates L.

1. True/False/Open

(a) F Every subset of a regular langugage is regular.
(b) O If Ly is N'P-complete and Ly is NP, there is a P-TIME reduction of Ly to Ls.

(¢) T If Ly is N'P-complete and Lo is NP and there is a P-TIME reduction of Ly to Lo, then Lo is
NP-complete.

(d) O If L is N'P-complete, there is no polynomial time algorithm which decides L.
(e) T Every N'P language is decidable.

(f) O NP = co-NP.

g
h

(g) T If Ly is undecidable and there is a recursive reduction of Ly to Lo, then Ly is undecidable.
(

F The CF grammar equivalence problem is recursively enumerable.

F If there is a machine that enumerates a languaqge L, then L must be decidable.

J
(k) T If there is a machine that accepts a languaqge L, then L must be recursively enumerable (RE).

(1) T If a language L is decidable, there is a machine that enumerates L.

)
)
)
)
)
(i) T If a language L is decidable, then there must be a machine that enumerates L in canonical order.
)
)
)
(m) T If there is a machine that enumerates a languaqge L in canonical order, then L must be decidable.
)

(n) OIf f: N — N is a one-to-one and onto function, where A is the natural numbers (positive
integers) we define the inverse of f to be a function g : N — N such that f(g(n)) = n and
g(f(n)) = n for all n € . There exists a one-to-one onto function f : N' — A which can be
computed in polynomial time whose inverse cannot be computed in polynomial time. (Such a

function is called a one-way function.)

(o) F There exists a recursive funtion T such that, for any provable statement P, there is a proof of P
whose length does not exceed T'(n), where n is the length of P.

2. Consider the following CF grammar and LALR parser.

ACTION GOTO
LS = i,53 ali|e|lw $ S
2. 5 = ix93.55 08| s2 56 1
3. 5 = wsSy 1 halt
45— o[58 | 52 56 3

3 s4 rl

4| s8 | s2 s6 5

5 T2 72

6| s8 | s2 56 7

7 r3 r3

8 r4 rd

Walk through the computation of this parser where the input string is iiwaeia.

$, . diwaeia$

$ois : twaeial | s2

$oiais : waeia$ | s2

EI TN : aeia$ | s6
$oiaiWsas : eia$ | s8
$oiaiowe S, : eia$ | rd | 4
$0%2755, : eia$ | 3 | 43
$0i27555€4 : ia$ | s4 | 43
$012%255€4%, : a$ | s2 | 43
$0720555€4%,05 $|s8 |43
$0721555€,49,55 $|rd| 434
$0i20255€455 $ | rl | 4341
$07255 $ | r2 | 43412
8,5, $ | ri| 434121
halt

3. Let L be a decidable language. Write a program in pseudo-code that enumerates L in canonical order.

Let ¥ be the alphabet of L. Let w, be the i*" string in the canonical order of ¥* The following program

enumerates L in canonical order.

For 7 from 1 to oo
If(w; € L) write w,

4. Let L = {(G1){G2) : G1,G4 are CF grammars that are not equivalent}. Prove that L is recursively
enumerable.! Assume that the terminal alphabet of both grammars is ¥. We need only give a program

which enumerates L.
Let Ly = {(G1){(G2) : G1,G2 are CF grammars}.
Note that L C Ly, and Lo is decidable, in fact, it is P-TIME, since all we have to do is check that both

(G1) and (G3) describe CF grammars. Thus Ly is recursively enumerable in canonical order. Consider
the following program, P. For n from 1 to oo
For all (G1){(Gs) € Lo of length no greater than n
For all w € ¥* of length no greater than n
If(w € L(G1) and w ¢ L(G2)) write (G1)(G2)
Else if(w € L(G2) and w ¢ L(G1)) write (G1)(G2)

We need to show that P enumerates L. Suppose u = (G1)G2 € L. Let i = |u|. Let w € ¥* be the
shortest string over ¥ which is generated by one of those grammars but not the other. (Such a string
must exist, since the two grammars are not equivalent.) Let j = |w|. Let n = max {7, j}. During the n'}
iteration of the outer loop, v will be written. On the other hand, if G; and G5 are equivalent, the string

u will never be written. Thus P enumerates L.

5. Prove that the halting problem is undecidable.

Recall that we can define L(M), for any machine M, to be the set of all strings accepted by M, that is,
all strings w such that M halts with input w. Let HALT = {{M)w : w € L(M)}. We prove that HALT
is undecidable by contradiction. Assume HALT is decidable. Let DIAG = {(M) : (M) ¢ L(M)}, the
diagonal language. Note that (M) € DIAG if and only if (M)(M) ¢ HALT. Thus, DIAG is decidable.

Let Mpiag be a machine which decides DIAG. Does Mpiag accept its own encoding?

By definition of DIAG, (Mpiac) € L(Mpiag) if and only if (Mprag) ¢ DIAG. By the definition of
Mpiag, (Mpiag) € L(Mpiac) if and only if (Mpiag) € DIAG. This is a contradiction. We conclude
that our assumption is false, that is, HALT is undecidable.

6. Given that 3-SAT is A'P-complete, prove, by reduction, that IND, the independent set problem, is also
NP-complete.

We give a polynomial time reduction R of 3-SAT to IND. For any Boolean expression F in 3-CNF form,
we define a graph G and a number k such that G has an independent set of size k if and only if E is
satisfiable.

Let E=C1 %Cs % ---%x () be a Boolean expression in 3-CNF form. Each clause C; is the disjunction of
three terms, each of which is a variable or the negation of a variable. We write C; =t,, +1%,,+1, 5, where
the {t,,.} are the terms. Let G be the graph whose vertices are {v,,,} for 1 <i < k and m = 1,2,3.
There are two sets of edges of G, short edges and long edges. There is a short edge between v, ,, and v, ,,

for any ¢ if n # m. There is a long edge from v, ,, to v, if t,,, *t

J.n

;. 15 a contradiction: that is, if one

of those terms is a variable = and the other is lz This function (from a 3-CNF expressions to (G, k)) is

clearly polynomial time.

1We know that L is not decidable, since the CF grammar equivalence problem is undecidable.

Suppose F is satisfiable. Pick a satisfying assignment of E. For each i € {1,...k}, pick one term of
C; which is true under that assignment, a total of k terms altogether. Let S be the set of vertices of
G corresponding to those terms. No two members of S are connected by a short edge, since the terms
are in separate clauses. No two members of S are connected by a long edge, because the terms do not

contradict. Therefore S is an independent set of vertices of G of order k.

Conversely, suppose S is an independent set of vertices of G of order k, and let T be the corresponding
set of terms of E. Choose an assignment such that each member of T' is true. Since no two members
of T contradict, this can be done. There could be some variables which are not mentioned in 7. These
variables can be arbitrarily assigned true or false. Since there is at least one true term in each clause,

each clause becomes true under that assignment, and thus F is satisfiable.

