
University of Nevada, Las Vegas Computer Science 456/656 Spring 2022

Assignment 4: Due Wednesday March 30 2022

Name:

You are permitted to work in groups, get help from others, read books, and use the internet. You will

receive a message from our graduate assistant telling you how to turn in the assignment.

Throughout this assignment, you may assume that a language is recursively enumerable if and only if it

is accepted by some machine. Recall that “L is recursively enumerable (RE)” means that there is a machine

that enumerates L.

1. True/False/Open

(a) F Every subset of a regular langugage is regular.

(b) O If L1 is NP-complete and L2 is NP, there is a P-time reduction of L1 to L2.

(c) T If L1 is NP-complete and L2 is NP and there is a P-time reduction of L1 to L2, then L2 is

NP-complete.

(d) O If L is NP-complete, there is no polynomial time algorithm which decides L.

(e) T Every NP language is decidable.

(f) O NP = co-NP.

(g) T If L1 is undecidable and there is a recursive reduction of L1 to L2, then L2 is undecidable.

(h) F The CF grammar equivalence problem is recursively enumerable.

(i) T If a language L is decidable, then there must be a machine that enumerates L in canonical order.

(j) F If there is a machine that enumerates a languaqge L, then L must be decidable.

(k) T If there is a machine that accepts a languaqge L, then L must be recursively enumerable (RE).

(l) T If a language L is decidable, there is a machine that enumerates L.

(m) T If there is a machine that enumerates a languaqge L in canonical order, then L must be decidable.

(n) O If f : N → N is a one-to-one and onto function, where N is the natural numbers (positive

integers) we define the inverse of f to be a function g : N → N such that f(g(n)) = n and

g(f(n)) = n for all n ∈ N . There exists a one-to-one onto function f : N → N which can be

computed in polynomial time whose inverse cannot be computed in polynomial time. (Such a

function is called a one-way function.)

(o) F There exists a recursive funtion T such that, for any provable statement P , there is a proof of P

whose length does not exceed T (n), where n is the length of P .

2. Consider the following CF grammar and LALR parser.

1. S → i2S3

2. S → i2S3e4S5

3. S → w6S7

4. S → a8

ACTION GOTO

a i e w $ S

0 s8 s2 s6 1

1 halt

2 s8 s2 s6 3

3 s4 r1

4 s8 s2 s6 5

5 r2 r2

6 s8 s2 s6 7

7 r3 r3

8 r4 r4

Walk through the computation of this parser where the input string is iiwaeia.

$0 : iiwaeia$

$0i2 : iwaeia$ s2

$0i2i2 : waeia$ s2

$0i2i2w6 : aeia$ s6

$0i2i2w6a8 : eia$ s8

$0i2i2w6S7 : eia$ r4 4

$0i2i2S3 : eia$ r3 43

$0i2i2S3e4 : ia$ s4 43

$0i2i2S3e4i2 : a$ s2 43

$0i2i2S3e4i2a8 : $ s8 43

$0i2i2S3e4i2S3 : $ r4 434

$0i2i2S3e4S5 : $ r1 4341

$0i2S3 : $ r2 43412

$0S1 : $ r1 434121

halt

3. Let L be a decidable language. Write a program in pseudo-code that enumerates L in canonical order.

Let Σ be the alphabet of L. Let wi be the ith string in the canonical order of Σ∗ The following program

enumerates L in canonical order.

For i from 1 to ∞

If(wi ∈ L) write wi

2

4. Let L = {〈G1〉〈G2〉 : G1, G2 are CF grammars that are not equivalent}. Prove that L is recursively

enumerable.1 Assume that the terminal alphabet of both grammars is Σ. We need only give a program

which enumerates L.

Let L2 = {〈G1〉〈G2〉 : G1, G2 are CF grammars}.

Note that L ⊆ L2, and L2 is decidable, in fact, it is P-time, since all we have to do is check that both

〈G1〉 and 〈G2〉 describe CF grammars. Thus L2 is recursively enumerable in canonical order. Consider

the following program, P . For n from 1 to ∞

For all 〈G1〉〈G2〉 ∈ L2 of length no greater than n

For all w ∈ Σ∗ of length no greater than n

If(w ∈ L(G1) and w /∈ L(G2)) write 〈G1〉〈G2〉

Else if(w ∈ L(G2) and w /∈ L(G1)) write 〈G1〉〈G2〉

We need to show that P enumerates L. Suppose u = 〈G1〉G2 ∈ L. Let i = |u|. Let w ∈ Σ∗ be the

shortest string over Σ which is generated by one of those grammars but not the other. (Such a string

must exist, since the two grammars are not equivalent.) Let j = |w|. Let n = max {i, j}. During the nth

iteration of the outer loop, u will be written. On the other hand, if G1 and G2 are equivalent, the string

u will never be written. Thus P enumerates L.

5. Prove that the halting problem is undecidable.

Recall that we can define L(M), for any machine M , to be the set of all strings accepted by M , that is,

all strings w such that M halts with input w. Let HALT = {〈M〉w : w ∈ L(M)}. We prove that HALT

is undecidable by contradiction. Assume HALT is decidable. Let DIAG = {〈M〉 : 〈M〉 /∈ L(M)}, the

diagonal language. Note that 〈M〉 ∈ DIAG if and only if 〈M〉〈M〉 /∈ HALT. Thus, DIAG is decidable.

Let Mdiag be a machine which decides DIAG. Does Mdiag accept its own encoding?

By definition of DIAG, 〈Mdiag〉 ∈ L(Mdiag) if and only if 〈Mdiag〉 /∈ DIAG. By the definition of

Mdiag, 〈Mdiag〉 ∈ L(Mdiag) if and only if 〈Mdiag〉 ∈ DIAG. This is a contradiction. We conclude

that our assumption is false, that is, HALT is undecidable.

6. Given that 3-SAT is NP-complete, prove, by reduction, that IND, the independent set problem, is also

NP-complete.

We give a polynomial time reduction R of 3-SAT to IND. For any Boolean expression E in 3-CNF form,

we define a graph G and a number k such that G has an independent set of size k if and only if E is

satisfiable.

Let E = C1 ∗ C2 ∗ · · · ∗ Ck be a Boolean expression in 3-CNF form. Each clause Ci is the disjunction of

three terms, each of which is a variable or the negation of a variable. We write Ci = ti,1+ ti,2+ ti,3, where

the {ti,m} are the terms. Let G be the graph whose vertices are {vi,m} for 1 ≤ i ≤ k and m = 1, 2, 3.

There are two sets of edges of G, short edges and long edges. There is a short edge between vi,m and vi,n

for any i if n 6= m. There is a long edge from vi,m to vj,n if ti,m ∗ tj,n is a contradiction: that is, if one

of those terms is a variable x and the other is !x This function (from a 3-CNF expressions to (G, k)) is

clearly polynomial time.

1We know that L is not decidable, since the CF grammar equivalence problem is undecidable.

3

Suppose E is satisfiable. Pick a satisfying assignment of E. For each i ∈ {1, . . . k}, pick one term of

Ci which is true under that assignment, a total of k terms altogether. Let S be the set of vertices of

G corresponding to those terms. No two members of S are connected by a short edge, since the terms

are in separate clauses. No two members of S are connected by a long edge, because the terms do not

contradict. Therefore S is an independent set of vertices of G of order k.

Conversely, suppose S is an independent set of vertices of G of order k, and let T be the corresponding

set of terms of E. Choose an assignment such that each member of T is true. Since no two members

of T contradict, this can be done. There could be some variables which are not mentioned in T . These

variables can be arbitrarily assigned true or false. Since there is at least one true term in each clause,

each clause becomes true under that assignment, and thus E is satisfiable.

4

