
University of Nevada, Las Vegas Computer Science 456/656 Spring 2022

Answers to Assignment 6: Due Tuesday May 3 2022 23:59:59

Throughout this assignment, you may assume that a language is recursively enumerable if and only if it is

accepted by some machine. Recall that “L is recursively enumerable (RE)” means that there is a machine

that enumerates L.

1. In the course of getting your degree in computer science, you will learn many things; but some of those

things are significantly more important than others. Because of the introduction of massively parallel

machines, knolwedge about the relationship between P–time and NC is among the most important.

Read the document dpNC02 on dynamic programming and NC with that in mind.

(a) Explain how addition of binary numerals for integers is a Boolean dynamic program with reachback

two.1

In reality, the problem has reachback 1.

Let x, y be binary strings of length n. Our goal is to compute a binary string x+ y. Let si be the

ith bit is x+ y, and let ci be the carry bit generated while computing si.

Let Ti ∈ {0, 1, 2} be the integer sum of xi and yi. Ti is not a variable of the dynamic program, since

it is an input.

The 2n variables of the DP are s1, s2, c2, . . . cn, in that order. Each of those can be computed in

terms of its immediate predecessor:

si =

{

!ci−1 if Ti = 1

ci−1 otherwise

ci =











0 if Ti = 0

!si if Ti = 1

1 if Ti = 2

(b) Describe an NC algorithm to solve any Boolean dynamic program with reachback 3.

This is a special case of Theorem 1 in the document, which is quite important. Despite the fact

that the result is “obvious,” it is not at all obvious why it is obvious. (Smiley face.) I will explain

it in formal terms mixed with informal remarks to help you along.

Here is the formal definition of the dynamic program. There are n Boolean valued subproblems,

S1, . . . Sn whose values are x1 . . . xn. Because reachback is bounded by 3, we can write x1 = F1

(with no parameters), x2 = F2(x1), x3 = F3(x2, x1), and xi = Fi(xi−1, xi−2, xi−3) for i ≥ 4. It turns

out that, for any i > j ≥ 3, xi = F j,j−1,j−2

i (xj, xj−1, xj−2), where F j,j−1,j−2

i is a Boolean function

with three Boolean parameters. (Note that Fi = F i−1,i−2,i−3

i .) We will compute all those Boolean

functions in O(log n) time, using O(n) processors. Since we can’t spend linear time, we need to

compute F j,j−1,j−2

i without knowing the values of the parameters! How can we do this? We first

note that there are only three Boolean parameters for each function, and there are only 23 = 8

choices of those parameters. Thus each F j,j−‘,j−2

i , which we also denote F j
i for short, can be stored

in O(1) space. For each i > j, we will compute and store a Boolean valued array F j
i [2][2][2]: in

other words, F j
i (p, q, r) for p, q, r ∈ {0, 1}.

1Your computer contains an NC microprogram which finds the sum of any two binary numerals of length n.



Our method is the typical “bootstrap” method of dynamic programming. We start with the fact

that F i−1,i−2,i−3

i = Fi, hence the formula for F i−1
i , for i ≥ 4, is an input of the problem, which we

store as a vector of 8 Booleans, one for each choice of (p, q, r).

Define the “gap” of F j
i to be i− j. We already have the formulae for the functions of gap = 1. We

proceed to work out the formulae for functions with increasing gaps.

It turns out that for any given g, we can compute all F j
i for i − j = g simultaneously with n

processors, in O(1) time, provided we have answers for all smaller gaps. But this will not yield an

NC computation. There are Θ(n) possible values of g, and if we work them sequentially, the time

will be O(n), which is not polylogarithmic.

Saving the Day! For any i > j ≥ 3, let k = (i+ j)/2, where we use integer (truncated) division.

Then

xi = F j
i (xj, xj−1, xj−2)

= F k
j (xk, xk−1, xk−2))

= F k
j (F

j
k (xj, xj−1, xj−2), F

j
k−1

(xj, xj−1, xj−2), F
j
k−2

(xj, xj−1, xj−2)

we can thus compute F j
i which has gap g = i − j by using four functions whose gaps are approxi-

mately at most g+1

2
, in a constant time computation:

F j
i (p, q, r) = F k

j (F
j
k (p, q, r), F

k
j−1(p, q, r), F

k
j−2(p, q, r))

for each choice of p, q, r.

Batching the Gaps. We first compute x1, x2, x3, and record F i−1

i
for all i ≥ 4. The remaining

computation is broken into O(log n) phases. During the first phase, we compute all functions of

gap 2. During the second phase, we compute all functions of gaps 3 and 4. During the tth phase,

we compute all functions with gaps between 2t−1 and 2t, namely F j
i for 2t−1 < i − j ≤ 2i. When

we are done, we have xi = F 3
i (x3, x2, x1). Each phase takes constant time with O(n2) processors.

Thus, the computation is NC.

Different Infinities If S is any set the set of all subsets of S is written 2S . Georg Cantor (1845–1918)

was the first to note that infinite sets may be of different sizes (cardinalities). We say that two sets A and B

have the same cardinality if there is a 1-1 correspondents f : A → B. That is, for every b ∈ B, there is exactly

one a ∈ A such that f(a) = b. If S is any set, the cardinality S is written as |S|, and the cardinality of 2S is

written 2|S|.

The finite cardinals are called zero, one, two, etc. But some sets are infinite, such as N , the set of natural

numbers. We use the Hebrew letter ℵ to denote infinite cardinals. By definition, ℵ0 is the smallest infinite

cardinal, ℵ1 is the next smallest, and so forth.

The cardinality of the set of natural numbers N is ℵ0. Thus the cardinality of every enumerable (countable)

set is also ℵ0. The set of all integers and the set of all fractions are both countable. Every language is countable,

and every subset of a countable set is countable; that subset is either finite or has cardinality ℵ0.

2



Cantor proved, using diagonalization, that the set of real numbers IR is uncountable. (Sets which are not

countable are called uncountable.) Here is his proof, which is by contradiction.

Suppose IR is countable. Then there is a 1-1 correspondence f : N → IR. Each real number has a decimal

expansion. Let x be a real number between 0 and 1 such that the ith decimal digit of x (that is, in the 10−i

place) is one greater than the ith decimal digit of f(i) unless that digit is 9, in which case we use 8. Then

x 6= f(i) for all i, and thus the image of f does not contain x, contradiction.

Another example of an uncountable set is the set of all languages over a given alphabet Σ. That set is

the set of all subsets of Σ∗, and is written 2Σ
∗

. The cardinality of that set is 2ℵ0 , which is the same as the

cardinality of IR.

The continuum hypothesis is that the cardinality of IR is ℵ1, that is, 2
ℵ0 = ℵ1 Cantor died without being

able to prove it. In 1964, Paul Cohen proved that the continuum hypothesis cannot be proved using the

standard axioms of set theory. It was already known that it could not be disproved, either. (The room was

packed when I saw Cohen’s presentation.)

2. Which of these sets are countable? Give a justification in each case.

(a) The set of all recursively enumerable languages.

(b) The set of all undecidable languages.

(c) The set of all real numbers whose decimal expansions are computed by a machine.

3


