
Pumping Lemmas

The main usefulness of the two pumping lemmas is to prove that a particular language is not
regular, or context-free, as the case may be. Each lemma states that every language in the class
has a certain property, and thus if we can prove that a given language L does not have that
property, L is not in the class.

If w is a string and a is a symbol, we write #a(w) to be the number of instances of the symbol a
in the string w.

Lemma 1 (Pumping Lemma for Regular Languages) If L is a regular language, there ex-

ists a positive integer p, called the pumping length of L, such that for any string w ∈ L whose

length is at least p, there exist strings x, y, z such that the following conditions hold.

1. w = xyz

2. |y| ≥ 1

3. |xy| ≤ p

4. for any i ≥ 0, xyiz ∈ L.

Note that the the value of p is not unique: if p is a pumping length of L, so is every integer larger
than p. There is a minimum pumping length.

Example

Let L be the language of all base 2 numerals for multiples of 5, where leading zeros are not allowed.
The minimum pumping length is 5. We won’t prove that, but for example, if w = 11001, which
means 25, we let x = 1, y = 10, and z = 01. The first three conditions obviously hold. If we let
i = 0, we get xz = 101, which means 5, while if i = 2 or i = 3, we get xy2z = 1101001 which
means 105, or xy3z = 110101001 which means 425. The pumping length cannot be 4, since 1111,
which means 15, does not have a pumpable substring. Thus, 5 is minimum.

Another example is w = 1110011, which means 115. Let x = 11, y = 100, and z = 11.

The Pumping Lemma and Finite Automata

Can you prove the following lemma?

Remark 1 A regular language accepted by an NFA with n states has pumping length n.

Lemma 1 follows from Remark 1. Do you see why?
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Lemma 2 (Pumping Lemma for Context-Free Languages) If L is a context-free language,

there exists a positive integer p, called the pumping length of L, such that for any string w ∈ L
whose length is at least p, there exist strings u, v, x, y, z such that the following conditions hold.

1. w = uvxyz

2. |v|+ |y| ≥ 1

3. |vxy| ≤ p

4. for any i ≥ 0, uvixyiz ∈ L.

Note that the the value of p is not unique: if p is a pumping length of L, so is every integer larger
than p. There is a minimum pumping length.

Example

Let L be the language consisting of all palindromes over {a, b}. The following is an unambiguous
grammar for L.

S− > aSa|bSb|a|b|λ

What is the minimum pumping length of L?

The answer is 3. If a palindrome w has even length, the substring aa or bb in the middle of
the string. That is, w = uaauR or w = ubbuR. Suppose w = uaauR. We let u = u, v = a,
x = λ, y = a, and z = ur. The first three conditions are obviously satisfied. For any i ≥ 0,
uvixyiz = uaiaiuR ∈ L. The case that w = ubbuR is similar.

If w has odd length, then there are four possibilities:
w = uaaauR

w = uabauR

w = ubabuR

w = ubbbuR

In the first case, we let u = u, x = a, y = a, and z = uR. In the second case, we let u = u, x = a,
y = b, and z = uR. The four conditions are satisfied. The other two cases are similar.

The minimum pumping length cannot be 2, because w = aba ∈ L, and the four conditions cannot
be fulfilled for w with p = 2.

2



Using the Pumping Lemmas

Lemma 1 states a property that all regular languages have. Hence, if a language fails to satisfy
that property, it is not regular. Similarly, if language fails to satisfy the property given by Lemma
2, it is not context-free. We use the lemmas to show a language is not regular and to show another
language to be not context-free.

Let L1 = {anbn : n ≥ 0}, and let L2 = {anbncn : n ≥ 0}.

Theorem 1 L1 is not regular.

Proof: By contradiction. We assume L1 is regular. Let p be a pumping length of L. (We
usually say, the pumping length, despite the fact that it is not unique.) Let w = apbp. Note that
|w| = 2p ≥ p, hence there exist strings x, y, z such that
1. w = xyz
2. |xy| ≤ p
3. |y| > 0
4. For any i ≥ 0, xyiz ∈ L1.

By 1. and 2., xy is a prefix of w of length no greater than p. Since the first p symbols of w are
a’s, that implies xy is a string of a’s, hence y is also a string of a’s. Write y = aj. By 3., j > 0.
Let i = 0. By 4., xy0z = xz ∈ L1. But xz = ap−jbp /∈ L1 since #a(xy 6= #b(xy), contradiction.

Theorem 2 L2 is not context-free.

Proof: By contradiction. We assume L2 is context-free. Let p be the pumping length of L. Let
w = apbpcp. Note that |w| = 3p ≥ p, hence there exist strings x, y, z, u, v such that
1. w = uvxyz
2. |vxy| ≤ p
3. |v|+ |y| > 0
4. For any i ≥ 0, uvixyiz ∈ L2.

Let j = |v| and k = |y|. By 3., j + k > 0. Let i = 0. By 4., Then uxz = uv0xy0z ∈ L2.

By 1., |u| + |vxy| + |z| = |w| = 3p. Subtracting |vxy|, which is less than or equal to than p, by
2., We have |u| + |z| ≥ 2p, hence those two numbers cannot both be less than p. That is, either
|u| ≥ p or |z| ≥ p.

We have two cases: |u| ≥ p, and |z| ≥ p. Suppose |u| ≥ p. Note that #a(u) +#a(vxy) +#a(z) =
#a(w) = p. Since u is a prefix of w = apbpcp of length it least p, it must contain all of ap, that is,
#a(u) = p. Thus #a(uxz) = p, and uxz ∈ L2, hence |uxz| = 3p. But |uxz| = 3p − j − k < 3p,
contradiction.

The case |z| ≥ p is similar.
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