Pumping Lemmas

The main usefulness of the two pumping lemmas is to prove that a particular language is not regular, or context-free, as the case may be. Each lemma states that every language in the class has a certain property, and thus if we can prove that a given language L does not have that property, L is not in the class.

If w is a string and a is a symbol, we write $\#_a(w)$ to be the number of instances of the symbol a in the string w.

Lemma 1 (Pumping Lemma for Regular Languages) If L is a regular language, there exists a positive integer p, called the pumping length of L, such that for any string $w \in L$ whose length is at least p, there exist strings x, y, z such that the following conditions hold.

```
1. w = xyz
```

- 2. $|y| \ge 1$
- $3. |xy| \leq p$
- 4. for any $i \geq 0$, $xy^i z \in L$.

Note that the value of p is not unique: if p is a pumping length of L, so is every integer larger than p. There is a minimum pumping length.

Example

Let L be the language of all base 2 numerals for multiples of 5, where leading zeros are not allowed. The minimum pumping length is 5. We won't prove that, but for example, if w = 11001, which means 25, we let x = 1, y = 10, and z = 01. The first three conditions obviously hold. If we let i = 0, we get xz = 101, which means 5, while if i = 2 or i = 3, we get $xy^2z = 1101001$ which means 105, or $xy^3z = 110101001$ which means 425. The pumping length cannot be 4, since 1111, which means 15, does not have a pumpable substring. Thus, 5 is minimum.

Another example is w = 1110011, which means 115. Let x = 11, y = 100, and z = 11.

The Pumping Lemma and Finite Automata

Can you prove the following lemma?

Remark 1 A regular language accepted by an NFA with n states has pumping length n.

Lemma 1 follows from Remark 1. Do you see why?

Lemma 2 (Pumping Lemma for Context-Free Languages) If L is a context-free language, there exists a positive integer p, called the pumping length of L, such that for any string $w \in L$ whose length is at least p, there exist strings u, v, x, y, z such that the following conditions hold.

```
1. w = uvxyz
```

2.
$$|v| + |y| \ge 1$$

$$3. |vxy| \leq p$$

4. for any
$$i \ge 0$$
, $uv^i x y^i z \in L$.

Note that the value of p is not unique: if p is a pumping length of L, so is every integer larger than p. There is a minimum pumping length.

Example

Let L be the language consisting of all palindromes over $\{a,b\}$. The following is an unambiguous grammar for L.

$$S - > aSa|bSb|a|b|\lambda$$

What is the minimum pumping length of L?

The answer is 3. If a palindrome w has even length, the substring aa or bb in the middle of the string. That is, $w = uaau^R$ or $w = ubbu^R$. Suppose $w = uaau^R$. We let u = u, v = a, $x = \lambda$, y = a, and $z = u^R$. The first three conditions are obviously satisfied. For any $i \geq 0$, $uv^i xy^i z = ua^i a^i u^R \in L$. The case that $w = ubbu^R$ is similar.

If w has odd length, then there are four possibilities:

```
w = uaaau^R
```

 $w = uabau^R$

 $w = ubabu^R$

 $w = ubbbu^{R}$

In the first case, we let u = u, x = a, y = a, and $z = u^R$. In the second case, we let u = u, x = a, y = b, and $z = u^R$. The four conditions are satisfied. The other two cases are similar.

The minimum pumping length cannot be 2, because $w = aba \in L$, and the four conditions cannot be fulfilled for w with p = 2.

Using the Pumping Lemmas

Lemma 1 states a property that all regular languages have. Hence, if a language fails to satisfy that property, it is not regular. Similarly, if language fails to satisfy the property given by Lemma 2, it is not context-free. We use the lemmas to show a language is not regular and to show another language to be not context-free.

Let $L_1 = \{a^n b^n : n \ge 0\}$, and let $L_2 = \{a^n b^n c^n : n \ge 0\}$.

Theorem 1 L_1 is not regular.

Proof: By contradiction. We assume L_1 is regular. Let p be a pumping length of L. (We usually say, the pumping length, despite the fact that it is not unique.) Let $w = a^p b^p$. Note that $|w| = 2p \ge p$, hence there exist strings x, y, z such that

- 1. w = xyz
- $2. |xy| \le p$
- 3. |y| > 0
- 4. For any $i \geq 0$, $xy^i z \in L_1$.

By 1. and 2., xy is a prefix of w of length no greater than p. Since the first p symbols of w are a's, that implies xy is a string of a's, hence y is also a string of a's. Write $y = a^j$. By 3., j > 0. Let i = 0. By 4., $xy^0z = xz \in L_1$. But $xz = a^{p-j}b^p \notin L_1$ since $\#_a(xy \neq \#_b(xy))$, contradiction.

Theorem 2 L_2 is not context-free.

Proof: By contradiction. We assume L_2 is context-free. Let p be the pumping length of L. Let $w = a^p b^p c^p$. Note that $|w| = 3p \ge p$, hence there exist strings x, y, z, u, v such that

- 1. w = uvxyz
- $2. |vxy| \leq p$
- 3. |v| + |y| > 0
- 4. For any i > 0, $uv^i x y^i z \in L_2$.

Let j=|v| and k=|y|. By 3., j+k>0. Let j=0. By 4., Then $uxz=uv^0xy^0z\in L_2$.

By 1., |u| + |vxy| + |z| = |w| = 3p. Subtracting |vxy|, which is less than or equal to than p, by 2., We have $|u| + |z| \ge 2p$, hence those two numbers cannot both be less than p. That is, either $|u| \ge p$ or $|z| \ge p$.

We have two cases: $|u| \ge p$, and $|z| \ge p$. Suppose $|u| \ge p$. Note that $\#_a(u) + \#_a(vxy) + \#_a(z) = \#_a(w) = p$. Since u is a prefix of $w = a^p b^p c^p$ of length it least p, it must contain all of a^p , that is, $\#_a(u) = p$. Thus $\#_a(uxz) = p$, and $uxz \in L_2$, hence |uxz| = 3p. But |uxz| = 3p - j - k < 3p, contradiction.

ı

The case $|z| \ge p$ is similar.