
Boolean Satisfiability

There are many alternative ways to define a Boolean expression, but for our discussion, we must
fix one of them. We define a string to be a Boolean expression if it is generated by the following
context-free grammar G, with start symbol S: Let BOOL be the language of all strings generated
by G.

S → !S (logical not)
S → S ⇒ S (implies)
S → S ≡ S (logical equal)
S → S 6= S (logical not equal)
S → S ∗ S (logical and)
S → S + S (logical or)
S → (S)
S → I (I generates all identifiers)
I → AN (The first symbol of an identifier must be a letter)
A → a|b|c|d|e|f |g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z
N → AN |0N |1N |2N |3N |4N |5N |6N |7N |8N |9N |λ
S → 0
S → 1

The strings generated by I are called identifiers. An assignment of a Boolean expression E is
an assignment of each identifier in I to a logical value, either 0 (false) or 1 (true). We say that
an assignment satisfies E the if evaluation of E yields 1, after repacing each identifier by its
assigned value. Otherwise, E is not satisfiable, i.e., a contradiction. Evaluation uses the rules of
precedence of C++.

Definition 1 A language L is NP–complete if there is a P–time reduction of any given

NP–time language to L.

We define an instance of the Boolean satisfiability problem to be a Boolean expression, E ∈
BOOL, where E ∈ SAT if E is satisfiable.

Theorem 1 Every NP–time language has a P–time reduction to SAT.

Thus, by definition, SAT is NP-complete. You can find the proof of Theorem 1 on the internet.

Conjunctive Normal Form

We say that a Boolean expression E is in conjunction normal form, or CNF, if E is the conjunction
of clauses, each of which consists of the disjunction of terms, each of which is a variable or the
negation of a variable. We say that E ∈ CNF is in 3CNF if each of its clauses has three terms.
That is,

E = C1 ∗ C2 ∗ · · · ∗ Ck

where Ci = (ti1 + ti2 + ti3), and where each term tij is a variable or the negation of a variable.
2CNF, 4CNF, etc. are defined similarly.

An instance of the 3SAT problem is a Boolean expression in 3CNF form. An expression E

1

is a member of the language 3SAT if it is satisfiable and in 3CNF form.1 Thus, 3SAT =
3CNF ∩ SAT .

Polynomial Time Reduction of SAT to 3SAT

We define two Boolean expressions E and E′ to be sat-equivalent if they both have the same
satisfiability, i.e., if either E and E′ are both satisfiable or E and E′ are both contradictions. We
will define a P–time reduction of SAT to 3SAT, i.e., a P–time function

R : BOOL → 3CNF

such that E′ = R(E) is sat-equivalent to E, for any Boolean expression E. We first construct
a parse tree for E, using the grammar G. and we simplify the parse tree to combine equivalent
nodes. We choose a set of identifiers that are not used for E, such as e0, e1, . . ., and place
one identifier at each internal node of the parse tree, where e0 is placed at the root. For each
internal node, we write a Boolean expression stating that the variable at that node is equal to
the concatenation of its children. Let E′′ be the e0 with the conjunction of those expressions. E′′

is sat-equivalent to E. We then use the following table to replace each clause of E′′ by a 3CNF
expression. The resulting expression is in 3CNF form, and is sat-equivalent to E.

a ≡ b+ c equals (a+!b) ∗ (!a+ b+ c) ∗ (a+ b+!c)
a ≡ b ∗ c equals (!a+ b) ∗ (a+!b+!c) ∗ (!a+!b+ c)

a ≡ !b equals (a+ b) ∗ (!a+!b)
a ≡ b ⇒ c equals (a+ b) ∗ (!a+!b+ c) ∗ (a+!b+!c)

Theorem 2 If SAT is NP–complete then 3SAT is NP–complete.

Example

Let E = ! (x+ y ⇒ z) ∗ z. We show the parse three and the compressed parse tree of E, and then
we replace each internal node by a unique auxiliary variable.

Then
E′′ = e0 ∗ (e0 ≡ e1 ∗ z) ∗ (e1 ≡ !e2) ∗ (e2 ≡ e3 ⇒ z) ∗ (e3 ≡ x+ y)

Using the equalities given in the table, replace each clause of E′′ by an expression in CNF form:

E′ = e0 ∗ (!e0 + e1) ∗ (e0+!e1+!z) ∗ (e0 + e1+!z) ∗ (e1 + e2) ∗ (!e1+!e2)

∗(e2 + e3) ∗ (!e2+!e3 + z) ∗ (e2+!e3+!z) ∗ (e3+!x) ∗ (!e3 + x+ y) ∗ (e3 + x+!y)

We can pad with redundant terms to change E′ into strict 3CNF form.

1When convenient, We can allow clauses of fewer than three terms, by introducing redundant terms: For example,
(x+ y) can be replaced by the equivalent (x+ y + y).

2

S

I

A N

z λ

=>

S

! S

S)(

S

S S

III

A N

I

A N

λx y λ

S

I

A N

z λ

S

*

+

=>

S

!

S

* z

S

S

+

z

yx

compressed
parse tree of E

=>

compressed
parse tree of E

variables
with auxiliary

parse tree of E

!
* z

+

z

yx

e0

e1

e3

e2

3

