True/False Questions

True or False. T = true, F = false, and O = open, meaning that the answer is not known science at this time. In the questions below, \mathcal{P} and \mathcal{NP} denote \mathcal{P} -TIME and \mathcal{NP} -TIME, respectively. (i) Let L be the language over $\{a, b, c\}$ consisting of all strings which have more a's than b's and more b's than c's. There is some PDA that accepts L. (ii) _____ The language $\{a^nb^n \mid n \geq 0\}$ is context-free. (iii) _____ The language $\{a^nb^nc^n \mid n \geq 0\}$ is context-free. (iv) _____ The language $\{a^i b^j c^k \mid j = i + k\}$ is context-free. (v) _____ The intersection of any two regular languages is regular. (vi) _____ The intersection of any regular language with any context-free language is context-free. (vii) _____ The intersection of any two context-free languages is context-free. (viii) ______ If L is a context-free language over an alphabet with just one symbol, then L is regular. (ix) _____ There is a deterministic parser for any context-free grammar. (x) _____ The set of strings that your high school algebra teacher would accept as legitimate expressions is a context-free language. (xi) _____ Every language accepted by a non-deterministic machine is accepted by some deterministic machine. (xii) _____ The problem of whether a given string is generated by a given context-free grammar is (xiii) _____ If G is a context-free grammar, the question of whether $L(G) = \emptyset$ is decidable. (xiv) _____ Every language generated by an unambiguous context-free grammar is accepted by some DPDA. (xv) _____ The language $\{a^nb^nc^nd^n \mid n \geq 0\}$ is recursive. (xvi) _____ The language $\{a^nb^nc^n \mid n \geq 0\}$ is in the class \mathcal{P} -TIME. (xvii) _____ There exists a polynomial time algorithm which finds the factors of any positive integer, where the input is given as a binary numeral. (xviii) _____ Every undecidable problem is \mathcal{NP} -complete. (xix) _____ Every problem that can be mathematically defined has an algorithmic solution. (xx) _____ The intersection of two undecidable languages is always undecidable. (xxi) _____ Every \mathcal{NP} language is decidable.

- (xxii) _____ The intersection of two \mathcal{NP} languages must be \mathcal{NP} .
- (xxiii) _____ If L_1 and L_2 are \mathcal{NP} -complete languages and $L_1 \cap L_2$ is not empty, then $L_1 \cap L_2$ must be \mathcal{NP} -complete.
- (xxiv) _____ There exists a \mathcal{P} -TIME algorithm which finds a maximum independent set in any graph G.
- (xxv) _____ There exists a \mathcal{P} -TIME algorithm which finds a maximum independent set in any acyclic graph G.
- (xxvi) $\mathcal{NC} = \mathcal{P}$.
- (xxvii) $\mathcal{P} = \mathcal{NP}$.
- (xxviii) $\mathcal{NP} = \mathcal{P}$ -space
- (xxix) \mathcal{P} -SPACE = EXP-TIME
- (xxx) ____ EXP-time = EXP-space
- (xxxi) $\underline{\hspace{1cm}}$ EXP-TIME = \mathcal{P} -TIME.
- (xxxii) $_$ EXP-SPACE = \mathcal{P} -SPACE.
- (xxxiii) _____ The traveling salesman problem (TSP) is known to be \mathcal{NP} -complete.
- (xxxiv) _____ The language consisting of all satisfiable Boolean expressions is known to be \mathcal{NP} -complete.
- (xxxv) _____ The Boolean Circuit Problem is in \mathcal{P} .
- (xxxvi) _____ The Boolean Circuit Problem is in \mathcal{NC} .
- (xxxvii) _____ If L_1 and L_2 are undecidable languages, there must be a recursive reduction of L_1 to L_2 .
- (xxxviii) $_$ 2-SAT is \mathcal{P} -TIME.
- (xxxix) $_$ 3-SAT is \mathcal{P} -TIME.
 - (xl) _____ Primality is \mathcal{P} -TIME.
 - (xli) _____ There is a \mathcal{P} -TIME reduction of the halting problem to 3-SAT.
 - (xlii) _____ Every context-free language is in \mathcal{P} .
 - (xliii) _____ Every context-free language is in \mathcal{NC} .
 - (xliv) _____ Addition of binary numerals is in \mathcal{NC} .
 - (xlv) _____ Every context-sensitive language is in \mathcal{P} .
 - (xlvi) _____ Every language generated by a general grammar is recursive.
 - (xlvii) _____ The problem of whether two given context-free grammars generate the same language is decidable.

(xlviii) ______ The language of all fractions (using base 10 numeration) whose values are less than π is decidable. (A fraction is a string. "314/100" is in the language, but "22/7" is not.) (xlix) _____ Any context-free language over the unary alphabet is regular. (l) _____ Any context-sensitive language over the unary alphabet is regular. (li) _____ Any recursive language over the unary alphabet is regular. (lii) _____ There exists a polynomial time algorithm which finds the factors of any positive integer, where the input is given as a unary numeral. (liii) ______ For any two languages L_1 and L_2 , if L_1 is undecidable and there is a recursive reduction of L_1 to L_2 , then L_2 must be undecidable. (liv) _____ For any two languages L_1 and L_2 , if L_2 is undecidable and there is a recursive reduction of L_1 to L_2 , then L_1 must be undecidable. (lv) _____ If P is a mathematical proposition that can be written using a string of length n, and P has a proof, then P must have a proof whose length is $O(2^{2^n})$. (lvi) _____ If L is any \mathcal{NP} language, there must be a \mathcal{P} -TIME reduction of L to the partition problem. (lvii) _____ Every bounded function is recursive. (lviii) _____ If L is \mathcal{NP} and also co- \mathcal{NP} , then L must be \mathcal{P} . (lix) _____ If L is \mathcal{RE} and also co- \mathcal{RE} , then L must be decidable. (lx) _____ Every language is enumerable. (lxi) _____ If a language L is undecidable, then there can be no machine that enumerates L. (lxii) _____ There exists a mathematical proposition which is true, but can be neither proved nor disproved. (lxiii) _____ There is a non-recursive function which grows faster than any recursive function. (lxiv) _____ There exists a machine that runs forever and outputs the string of decimal digits of π (the well-known ratio of the circumference of a circle to its diameter). (lxv) _____ For every real number x, there exists a machine that runs forever and outputs the string of decimal digits of x. (lxvi) _____ Rush Hour, the puzzle sold in game stores everywhere, generalized to a board of arbitrary size, is known to be \mathcal{NP} -complete. (lxvii) _____ There is a polynomial time algorithm which determines whether any two regular expressions (lxviii) _____ If two regular expressions are equivalent, there is a polynomial time proof that they are equivalent.

(lxix)	Every subset of a regular language is regular.
(lxx)	Every subset of any enumerable set is enumerable.
(lxxi)	The computer language Pascal has Turing power.
(lxxii)	Computing the square of an integer written in binary notation is an \mathcal{NC} function.
(lxxiii)	If L is any \mathcal{P} -TIME language, there is an \mathcal{NC} reduction of L to the Boolean circuit problem.
(lxxiv)	If an abstract Pascal machine can perform a computation in polynomial time, there must be some Turing machine that can perform the same computation in polynomial time.
(lxxv)	The binary integer factorization problem is co- \mathcal{NP} .
(lxxvi)	There is a polynomial time reduction of the subset sum problem to the binary numeral factorization problem.
(lxxvii)	There is a polynomial time reduction of the binary numeral factorization problem to the subset sum problem.
(lxxviii)	For any real number x , the set of fractions whose values are less than x is \mathcal{RE} .
(lxxix)	For any recursive real number x , the set of fractions whose values are less than x is recursive.
(lxxx)	The union of any two deterministic context-free languages must be a DCFL.
(lxxxi)	The intersection of any two deterministic context-free languages must be a DCFL.
(lxxxii)	The complement of any DCFL must be a DCFL.
(lxxxiii)	The membership problem for a DCFL is in the class \mathcal{P} -TIME.
(lxxxiv)	Every finite language is decidable.
(lxxxv)	Every context-free language is in Nick's class.
(lxxxvi)	2SAT is known to be \mathcal{NP} -complete.
(lxxxvii)	The complement of any \mathcal{P} -TIME language is \mathcal{P} -TIME.
(lxxxviii)	The complement of any \mathcal{P} -SPACE language is \mathcal{P} -SPACE.
	jigsaw puzzle problem is, given a set of various polygons, and given a rectangular table, is it possibe seemble those polygons to exactly cover the table?
	furniture mover's problem is, given a room with a door, and given a set of objects outside the room, possible to move all the objects into the room through the door?
(lxxxix)	The jigsaw puzzle problem is known to be \mathcal{NP} complete.
(xc)	The jigsaw puzzle problem is known to be $\mathcal{P} ext{space}$ complete.
(xci)	The furniture mover's problem is known to be \mathcal{NP} complete.

(xcii)	The furniture mover's problem is known to be $\mathcal{P} ext{SPACE}$ complete.
(xciii)	The complement of any recursive language is recursive.
(xciv)	The complement of any undecidable language is undecidable.
(xcv)	Every undecidable language is either \mathcal{RE} or co- \mathcal{RE} .
(xcvi)	For any infinite countable sets A and B , there is a 1-1 correspondence between A and B .
(xcvii)	A language L is recursively enumerable if and only if there is a machine which accepts L .
(xcviii)	Every \mathcal{NP} language is reducible to the independent set problem in polynomial time.
(xcix)	If a Boolean expression is satisfiable, there is a polynomial time proof that it is satisfiable.
(c)	The general sliding block problem is $\mathcal{P} ext{SPACE}$ complete.
(ci)	. The regular expression equivalence problem is $\mathcal{P} ext{SPACE}$ complete.
(cii)	The context-sensitive membership problem is $\mathcal{P} ext{SPACE}$ complete.
(ciii)	The Post correspondence problem is undecidable