Answers to True/False Questions

- 1. True or False. T = true, F = false, and O = open, meaning that the answer is not known science at this time. In the questions below, \mathcal{P} and \mathcal{NP} denote \mathcal{P} -TIME and \mathcal{NP} -TIME, respectively.
 - (i) **F** Let *L* be the language over $\{a, b, c\}$ consisting of all strings which have more *a*'s than *b*'s and more *b*'s than *c*'s. There is some PDA that accepts *L*.
 - (ii) **T** The language $\{a^n b^n \mid n \ge 0\}$ is context-free.
 - (iii) **F** The language $\{a^n b^n c^n \mid n \ge 0\}$ is context-free.
 - (iv) **T** The language $\{a^i b^j c^k \mid j = i + k\}$ is context-free.
 - (v) **T** The intersection of any two regular languages is regular.
 - (vi) \mathbf{T} The intersection of any regular language with any context-free language is context-free.
 - (vii) F The intersection of any two context-free languages is context-free.
 - (viii) **T** If L is a context-free language over an alphabet with just one symbol, then L is regular.
 - (ix) **F** There is a deterministic parser for any context-free grammar.
 - (x) \mathbf{T} The set of strings that your high school algebra teacher would accept as legitimate expressions is a context-free language.
 - (xi) **T** Every language accepted by a non-deterministic machine is accepted by some deterministic machine.
 - (xii) **T** The problem of whether a given string is generated by a given context-free grammar is decidable.
 - (xiii) **T** If G is a context-free grammar, the question of whether $L(G) = \emptyset$ is decidable.
 - (xiv) **F** Every language generated by an unambiguous context-free grammar is accepted by some DPDA.
 - (xv) **T** The language $\{a^n b^n c^n d^n \mid n \ge 0\}$ is recursive.
 - (xvi) **T** The language $\{a^n b^n c^n \mid n \ge 0\}$ is in the class \mathcal{P} -TIME.
 - (xvii) **O** There exists a polynomial time algorithm which finds the factors of any positive integer, where the input is given as a binary numeral.
 - (xviii) **F** Every undecidable problem is \mathcal{NP} -complete.
 - (xix) **F** Every problem that can be mathematically defined has an algorithmic solution.
 - (xx) **F** The intersection of two undecidable languages is always undecidable.
 - (xxi) **T** Every \mathcal{NP} language is decidable.
 - (xxii) **T** The intersection of two \mathcal{NP} languages must be \mathcal{NP} .

- (xxiii) **F** If L_1 and L_2 are known to be \mathcal{NP} -complete languages and $L_1 \cap L_2$ is not empty, then $L_1 \cap L_2$ is known to be \mathcal{NP} -complete.
- (xxiv) **O** There exists a \mathcal{P} -TIME algorithm which finds a maximum independent set in any graph G.
- (xxv) **T** There exists a \mathcal{P} -TIME algorithm which finds a maximum independent set in any acyclic graph G.
- (xxvi) $\mathbf{O} \mathcal{NC} = \mathcal{P}.$
- (xxvii) $\mathbf{O} \mathcal{P} = \mathcal{NP}.$
- (xxviii) $\mathbf{O} \ \mathcal{NP} = \mathcal{P}\text{-space}$
- (xxix) **O** \mathcal{P} -space = EXP-time
- (xxx) **O** EXP-TIME = EXP-SPACE
- (xxxi) \mathbf{F} EXP-TIME = \mathcal{P} -TIME.
- (xxxii) \mathbf{F} EXP-SPACE = \mathcal{P} -SPACE.
- (xxxiii) **T** The traveling salesman problem (TSP) is known to be \mathcal{NP} -complete.
- (xxxiv) **T** The language consisting of all satisfiable Boolean expressions is known to be \mathcal{NP} -complete.
- (xxxv) **T** The Boolean Circuit Problem is in \mathcal{P} .
- (xxxvi) **O** The Boolean Circuit Problem is in \mathcal{NC} .
- (xxxvii) **F** If L_1 and L_2 are undecidable languages, there must be a recursive reduction of L_1 to L_2 .
- (xxxviii) **T** 2-SAT is \mathcal{P} -TIME.
- (xxxix) **O** 3-SAT is \mathcal{P} -TIME.
 - (xl) **T** Primality is \mathcal{P} -TIME.
 - (xli) **T** There is a \mathcal{P} -TIME reduction of the halting problem to 3-SAT.
 - (xlii) **T** Every context-free language is in \mathcal{P} .
 - (xliii) **T** Every context-free language is in \mathcal{NC} .
 - (xliv) **T** Addition of binary numerals is in \mathcal{NC} .
 - (xlv) **O** Every context-sensitive language is in \mathcal{P} .
 - (xlvi) **F** Every language generated by a general grammar is recursive.
- (xlvii) **F** The problem of whether two given context-free grammars generate the same language is decidable.
- (xlviii) **T** The language of all fractions (using base 10 numeration) whose values are less than π is decidable. (A *fraction* is a string. "314/100" is in the language, but "22/7" is not.)

- (xlix) **T** Any context-free language over the unary alphabet is regular.
 - (l) **F** Any context-sensitive language over the unary alphabet is regular.
 - (li) F Any recursive language over the unary alphabet is regular.
 - (lii) \mathbf{T} There exists a polynomial time algorithm which finds the factors of any positive integer, where the input is given as a unary numeral.
 - (liii) **T** For any two languages L_1 and L_2 , if L_1 is undecidable and there is a recursive reduction of L_1 to L_2 , then L_2 must be undecidable.
 - (liv) **F** For any two languages L_1 and L_2 , if L_2 is undecidable and there is a recursive reduction of L_1 to L_2 , then L_1 must be undecidable.
 - (lv) **F** If P is a mathematical proposition that can be written using a string of length n, and P has a proof, then P must have a proof whose length is $O(2^{2^n})$.
- (lvi) **T** If L is any \mathcal{NP} language, there must be a \mathcal{P} -TIME reduction of L to the partition problem.
- (lvii) **F** Every bounded function is recursive.
- (lviii) **O** If L is \mathcal{NP} and also co- \mathcal{NP} , then L must be \mathcal{P} .
- (lix) **T** If L is \mathcal{RE} and also co- \mathcal{RE} , then L must be decidable.
- (lx) \mathbf{T} Every language is enumerable.
- (lxi) **F** If a language L is undecidable, then there can be no machine that enumerates L.
- (lxii) **T** There exists a mathematical proposition which is true, but can be neither proved nor disproved.
- (lxiii) \mathbf{T} There is a non-recursive function which grows faster than any recursive function.
- (lxiv) **T** There exists a machine that runs forever and outputs the string of decimal digits of π (the well-known ratio of the circumference of a circle to its diameter).
- (lxv) **F** For every real number x, there exists a machine that runs forever and outputs the string of decimal digits of x.
- (lxvi) **F** Rush Hour, the puzzle sold in game stores everywhere, generalized to a board of arbitrary size, is known to be \mathcal{NP} -complete.
- (lxvii) **O** There is a polynomial time algorithm which determines whether any two regular expressions are equivalent.
- (lxviii) **O** If two regular expressions are equivalent, there is a polynomial time proof that they are equivalent.
- (lxix) **F** Every subset of a regular language is regular.
- (lxx) **T** Every subset of any enumerable set is enumerable.
- (lxxi) **T** The computer language Pascal has Turing power.

- (lxxii) **T** Computing the square of an integer written in binary notation is an \mathcal{NC} function.
- (lxxiii) **T** If L is any \mathcal{P} -TIME language, there is an \mathcal{NC} reduction of L to the Boolean circuit problem.
- (lxxiv) \mathbf{T} If an abstract Pascal machine can perform a computation in polynomial time, there must be some Turing machine that can perform the same computation in polynomial time.
- (lxxv) **T** The binary integer factorization problem is $\operatorname{co-}\mathcal{NP}$.
- (lxxvi) \mathbf{T} There is a polynomial time reduction of the subset sum problem to the binary numeral factorization problem.
- (lxxvii) **O** There is a polynomial time reduction of the binary numeral factorization problem to the subset sum problem.
- (lxxviii) **F** For any real number x, the set of fractions whose values are less than x is \mathcal{RE} .
- (lxxix) **T** For any recursive real number x, the set of fractions whose values are less than x is recursive.
- (lxx) **F** The union of any two deterministic context-free languages must be a DCFL.
- (lxxxi) **F** The intersection of any two deterministic context-free languages must be a DCFL.
- (lxxxii) **F** The complement of any DCFL must be a DCFL.
- (lxxxiii) **T** The membership problem for a DCFL is in the class \mathcal{P} -TIME.
- (lxxxiv) **T** Every finite language is decidable.
- (lxxxv) **T** Every context-free language is in Nick's class.
- (lxxxvi) **F** 2SAT is known to be \mathcal{NP} -complete.
- (lxxxvii) **T** The complement of any \mathcal{P} -TIME language is \mathcal{P} -TIME.
- (lxxxviii) **T** The complement of any \mathcal{P} -SPACE language is \mathcal{P} -SPACE.

The *jigsaw puzzle problem* is, given a set of various polygons, and given a rectangular table, is it possible to assemble those polygons to exactly cover the table?

The *furniture mover's problem* is, given a room with a door, and given a set of objects outside the room, it is possible to move all the objects into the room through the door?

- (lxxxix) **T** The jigsaw puzzle problem is known to be \mathcal{NP} complete.
 - (xc) **F** The jigsaw puzzle problem is known to be \mathcal{P} -SPACE complete.
 - (xci) The furniture mover's problem is known to be \mathcal{NP} complete.
 - (xcii) **T** The furniture mover's problem is known to be \mathcal{P} -space complete.
 - (xciii) \mathbf{T} The complement of any recursive language is recursive.
 - (xciv) \mathbf{T} The complement of any undecidable language is undecidable.

- (xcv) **F** Every undecidable language is either \mathcal{RE} or co- \mathcal{RE} .
- (xcvi) **T** For any infinite countable sets A and B, there is a 1-1 correspondence between A and B.
- (xcvii) **T** A language L is recursively enumerable if and only if there is a machine which accepts L.
- (xcviii) **T** Every \mathcal{NP} language is reducible to the independent set problem in polynomial time.
- (xcix) \mathbf{T} If a Boolean expression is satisfiable, there is a polynomial time proof that it is satisfiable.
 - (c) **T** The general sliding block problem is \mathcal{P} -SPACE complete.
 - (ci) **T** The regular epression equivalence problem is \mathcal{P} -SPACE complete.
 - (cii) T The context-sensitive membership problem is \mathcal{P} -space complete.
- (ciii) **T** The Post correspondence problem is undecidable.