
Classes of automata

A diagram of a pushdown automaton

Pushdown automaton

In the theory of computation, a branch of theoretical

computer science, a pushdown automaton (PDA) is a

type of automaton that employs a stack.

Pushdown automata are used in theories about what can

be computed by machines. ey are more capable than

finite-state machines but less capable than Turing

machines (see below). Deterministic pushdown automata

can recognize all deterministic context-free languages

while nondeterministic ones can recognize all context-

free languages, with the former oen used in parser

design.

e term "pushdown" refers to the fact that the stack can

be regarded as being "pushed down" like a tray dispenser

at a cafeteria, since the operations never work on

elements other than the top element. A stack automaton, by contrast, does allow access to and operations

on deeper elements. Stack automata can recognize a strictly larger set of languages than pushdown

automata.[1] A nested stack automaton allows full access, and also allows stacked values to be entire sub-

stacks rather than just single finite symbols.

A finite-state machine just looks at the input signal

and the current state: it has no stack to work with.

It chooses a new state, the result of following the

transition. A pushdown automaton (PDA)

differs from a finite state machine in two ways:

1. It can use the top of the stack to
decide which transition to take.

2. It can manipulate the stack as part of
performing a transition.

A pushdown automaton reads a given input string

from le to right. In each step, it chooses a transition by indexing a table by input symbol, current state,

and the symbol at the top of the stack. A pushdown automaton can also manipulate the stack, as part of

performing a transition. e manipulation can be to push a particular symbol to the top of the stack, or to

pop off the top of the stack. e automaton can alternatively ignore the stack, and leave it as it is.

Put together: Given an input symbol, current state, and stack symbol, the automaton can follow a transition

to another state, and optionally manipulate (push or pop) the stack.

Informal description

Pushdown automaton - Wikipedia https://en.wikipedia.org/wiki/Pushdown_automaton

1 of 9 2/17/23, 16:26

https://en.wikipedia.org/wiki/Main_Page
https://en.wikipedia.org/wiki/Main_Page
https://en.wikipedia.org/wiki/File:Automata_theory.svg
https://en.wikipedia.org/wiki/File:Automata_theory.svg
https://en.wikipedia.org/wiki/File:Pushdown-overview.svg
https://en.wikipedia.org/wiki/File:Pushdown-overview.svg
https://en.wikipedia.org/wiki/Main_Page
https://en.wikipedia.org/wiki/Main_Page
https://en.wikipedia.org/wiki/Main_Page
https://en.wikipedia.org/wiki/Theory_of_computation
https://en.wikipedia.org/wiki/Theory_of_computation
https://en.wikipedia.org/wiki/Theoretical_computer_science
https://en.wikipedia.org/wiki/Theoretical_computer_science
https://en.wikipedia.org/wiki/Theoretical_computer_science
https://en.wikipedia.org/wiki/Theoretical_computer_science
https://en.wikipedia.org/wiki/Automata_theory
https://en.wikipedia.org/wiki/Automata_theory
https://en.wikipedia.org/wiki/Stack_(data_structure)
https://en.wikipedia.org/wiki/Stack_(data_structure)
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Turing_machine
https://en.wikipedia.org/wiki/Turing_machine
https://en.wikipedia.org/wiki/Turing_machine
https://en.wikipedia.org/wiki/Turing_machine
https://en.wikipedia.org/wiki/Pushdown_automaton#PDA_and_Turing_machines
https://en.wikipedia.org/wiki/Pushdown_automaton#PDA_and_Turing_machines
https://en.wikipedia.org/wiki/Deterministic_pushdown_automata
https://en.wikipedia.org/wiki/Deterministic_pushdown_automata
https://en.wikipedia.org/wiki/Deterministic_context-free_language
https://en.wikipedia.org/wiki/Deterministic_context-free_language
https://en.wikipedia.org/wiki/Context-free_language
https://en.wikipedia.org/wiki/Context-free_language
https://en.wikipedia.org/wiki/Context-free_language
https://en.wikipedia.org/wiki/Context-free_language
https://en.wikipedia.org/wiki/Parser
https://en.wikipedia.org/wiki/Parser
https://en.wikipedia.org/wiki/Stack_(abstract_data_type)
https://en.wikipedia.org/wiki/Stack_(abstract_data_type)
https://en.wikipedia.org/wiki/Pushdown_automaton#cite_note-Hopcroft.Ullman.1967-1
https://en.wikipedia.org/wiki/Pushdown_automaton#cite_note-Hopcroft.Ullman.1967-1
https://en.wikipedia.org/wiki/Nested_stack_automaton
https://en.wikipedia.org/wiki/Nested_stack_automaton
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Finite-state_machine

If, in every situation, at most one such transition action is possible, then the automaton is called a

deterministic pushdown automaton (DPDA). In general, if several actions are possible, then the

automaton is called a general, or nondeterministic, PDA. A given input string may drive a

nondeterministic pushdown automaton to one of several configuration sequences; if one of them leads to

an accepting configuration aer reading the complete input string, the laer is said to belong to the

language accepted by the automaton.

We use standard formal language notation: denotes the set of finite-length strings over alphabet and

denotes the empty string.

A PDA is formally defined as a 7-tuple:

 where

▪ is a finite set of states

▪ is a finite set which is called the input alphabet

▪ is a finite set which is called the stack alphabet

▪ is a finite subset of , the transition relation

▪ is the start state

▪ is the initial stack symbol

▪ is the set of accepting states

An element is a transition of . It has the intended meaning that , in state , on

the input and with as topmost stack symbol, may read , change the state to , pop ,

replacing it by pushing . e component of the transition relation is used to formalize that

the PDA can either read a leer from the input, or proceed leaving the input untouched.

In many texts[2]: 110  the transition relation is replaced by an (equivalent) formalization, where

▪ is the transition function, mapping into finite subsets of

Here contains all possible actions in state with on the stack, while reading on the input.

One writes for example precisely when

because . Note that finite in this definition is essential.

Computations

In order to formalize the semantics of the pushdown automaton a description of the current situation is

introduced. Any 3-tuple is called an instantaneous description (ID) of , which

includes the current state, the part of the input tape that has not been read, and the contents of the stack

(topmost symbol wrien first). e transition relation defines the step-relation of on instantaneous

descriptions. For instruction there exists a step , for every

 and every .

In general pushdown automata are nondeterministic meaning that in a given instantaneous description

 there may be several possible steps. Any of these steps can be chosen in a computation. With the

Formal definition

Pushdown automaton - Wikipedia https://en.wikipedia.org/wiki/Pushdown_automaton

2 of 9 2/17/23, 16:26

https://en.wikipedia.org/wiki/Deterministic_pushdown_automaton
https://en.wikipedia.org/wiki/Deterministic_pushdown_automaton
https://en.wikipedia.org/wiki/String_(computer_science)
https://en.wikipedia.org/wiki/String_(computer_science)
https://en.wikipedia.org/wiki/Empty_string
https://en.wikipedia.org/wiki/Empty_string
https://en.wikipedia.org/wiki/Pushdown_automaton#cite_note-Hopcroft.Ullman.1979-2
https://en.wikipedia.org/wiki/Pushdown_automaton#cite_note-Hopcroft.Ullman.1979-2

a step of the pushdown

automaton

PDA for

(by final state)

above definition in each step always a single symbol (top of the stack) is

popped, replacing it with as many symbols as necessary. As a

consequence no step is defined when the stack is empty.

Computations of the pushdown automaton are sequences of steps. e

computation starts in the initial state with the initial stack symbol

on the stack, and a string on the input tape, thus with initial

description . ere are two modes of accepting. e pushdown

automaton either accepts by final state, which means aer reading its

input the automaton reaches an accepting state (in), or it accepts by

empty stack (), which means aer reading its input the automaton

empties its stack. e first acceptance mode uses the internal memory

(state), the second the external memory (stack).

Formally one defines

1. with and

(final state)

2. with (empty stack)

Here represents the reflexive and transitive closure of the step relation meaning any number of

consecutive steps (zero, one or more).

For each single pushdown automaton these two languages need to have no relation: they may be equal but

usually this is not the case. A specification of the automaton should also include the intended mode of

acceptance. Taken over all pushdown automata both acceptance conditions define the same family of

languages.

eorem. For each pushdown automaton one may construct a pushdown automaton such that

, and vice versa, for each pushdown automaton one may construct a pushdown

automaton such that

e following is the formal description of the PDA which recognizes the language by final

state:

, where

▪ states:

▪ input alphabet:

▪ stack alphabet:

▪ start state:

▪ start stack symbol: Z

▪ accepting states:

e transition relation consists of the following six instructions:

Example

Pushdown automaton - Wikipedia https://en.wikipedia.org/wiki/Pushdown_automaton

3 of 9 2/17/23, 16:26

https://en.wikipedia.org/wiki/File:Pushdown-step.svg
https://en.wikipedia.org/wiki/File:Pushdown-step.svg
https://en.wikipedia.org/wiki/File:Pda-example.svg
https://en.wikipedia.org/wiki/File:Pda-example.svg
https://en.wikipedia.org/wiki/Reflexive_closure
https://en.wikipedia.org/wiki/Reflexive_closure
https://en.wikipedia.org/wiki/Transitive_closure
https://en.wikipedia.org/wiki/Transitive_closure

accepting computation for

0011

,

,

,

,

, and

.

In words, the first two instructions say that in state p any time the symbol 0 is read, one A is pushed onto

the stack. Pushing symbol A on top of another A is formalized as replacing top A by AA (and similarly for

pushing symbol A on top of a Z).

e third and fourth instructions say that, at any moment the automaton may move from state p to state q.

e fih instruction says that in state q, for each symbol 1 read, one A is popped.

Finally, the sixth instruction says that the machine may move from state q to accepting state r only when

the stack consists of a single Z.

ere seems to be no generally used representation for PDA. Here we have depicted the instruction

 by an edge from state p to state q labelled by (read a; replace A by).

e following illustrates how the above PDA computes on different

input strings. e subscript M from the step symbol is here omied.

a. Input string = 0011. There are various computations,
depending on the moment the move from state p to
state q is made. Only one of these is accepting.

i.

The final state is accepting, but the input is not accepted this way as it has not
been read.

ii.

No further steps possible.

iii.

Accepting computation: ends in accepting state, while complete input has been
read.

b. Input string = 00111. Again there are various computations. None of these is
accepting.

i.

The final state is accepting, but the input is not accepted this way as it has not
been read.

ii.

No further steps possible.

iii.

The final state is accepting, but the input is not accepted this way as it has not

Understanding the computation process

Pushdown automaton - Wikipedia https://en.wikipedia.org/wiki/Pushdown_automaton

4 of 9 2/17/23, 16:26

https://en.wikipedia.org/wiki/File:Pda-steps.svg
https://en.wikipedia.org/wiki/File:Pda-steps.svg

been (completely) read.

Every context-free grammar can be transformed into an equivalent nondeterministic pushdown automaton.

e derivation process of the grammar is simulated in a lemost way. Where the grammar rewrites a

nonterminal, the PDA takes the topmost nonterminal from its stack and replaces it by the right-hand part

of a grammatical rule (expand). Where the grammar generates a terminal symbol, the PDA reads a symbol

from input when it is the topmost symbol on the stack (match). In a sense the stack of the PDA contains the

unprocessed data of the grammar, corresponding to a pre-order traversal of a derivation tree.

Technically, given a context-free grammar, the PDA has a single state, 1, and its transition relation is

constructed as follows.

1. for each rule (expand)

2. for each terminal symbol (match)

e PDA accepts by empty stack. Its initial stack symbol is the grammar's start symbol.

For a context-free grammar in Greibach normal form, defining (1,γ) ∈ δ(1,a,A) for each grammar rule A →

aγ also yields an equivalent nondeterministic pushdown automaton.[2]: 115 

e converse, finding a grammar for a given PDA, is not that easy. e trick is to code two states of the

PDA into the nonterminals of the grammar.

eorem. For each pushdown automaton one may construct a context-free grammar such that

.[2]: 116 

e language of strings accepted by a deterministic pushdown automaton (DPDA) is called a deterministic

context-free language. Not all context-free languages are deterministic.[note 1] As a consequence, the DPDA

is a strictly weaker variant of the PDA. Even for regular languages, there is a size explosion problem: for

any recursive function and for arbitrarily large integers , there is a PDA of size describing a regular

language whose smallest DPDA has at least states.[4] For many non-regular PDAs, any equivalent

DPDA would require an unbounded number of states.

A finite automaton with access to two stacks is a more powerful device, equivalent in power to a Turing

machine.[2]: 171  A linear bounded automaton is a device which is more powerful than a pushdown

automaton but less so than a Turing machine.[note 2]

A pushdown automaton is computationally equivalent to a 'restricted' Turing Machine (TM) with two tapes

which is restricted in the following manner- On the first tape, the TM can only read the input and move

from le to right (it cannot make changes). On the second tape, it can only 'push' and 'pop' data. Or

equivalently, it can read, write and move le and right with the restriction that the only action it can

perform at each step is to either delete the le-most character in the string (pop) or add an extra character

le to the le-most character in the string (push).

at a PDA is weaker than a TM can be brought down to the fact that the procedure 'pop' deletes some

PDA and context-free languages

PDA and Turing machines

Pushdown automaton - Wikipedia https://en.wikipedia.org/wiki/Pushdown_automaton

5 of 9 2/17/23, 16:26

https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Greibach_normal_form
https://en.wikipedia.org/wiki/Greibach_normal_form
https://en.wikipedia.org/wiki/Pushdown_automaton#cite_note-Hopcroft.Ullman.1979-2
https://en.wikipedia.org/wiki/Pushdown_automaton#cite_note-Hopcroft.Ullman.1979-2
https://en.wikipedia.org/wiki/Pushdown_automaton#cite_note-Hopcroft.Ullman.1979-2
https://en.wikipedia.org/wiki/Pushdown_automaton#cite_note-Hopcroft.Ullman.1979-2
https://en.wikipedia.org/wiki/Deterministic_context-free_language
https://en.wikipedia.org/wiki/Deterministic_context-free_language
https://en.wikipedia.org/wiki/Deterministic_context-free_language
https://en.wikipedia.org/wiki/Deterministic_context-free_language
https://en.wikipedia.org/wiki/Pushdown_automaton#cite_note-4
https://en.wikipedia.org/wiki/Pushdown_automaton#cite_note-4
https://en.wikipedia.org/wiki/Regular_language
https://en.wikipedia.org/wiki/Regular_language
https://en.wikipedia.org/wiki/General_recursive_function
https://en.wikipedia.org/wiki/General_recursive_function
https://en.wikipedia.org/wiki/Pushdown_automaton#cite_note-5
https://en.wikipedia.org/wiki/Pushdown_automaton#cite_note-5
https://en.wikipedia.org/wiki/Turing_machine
https://en.wikipedia.org/wiki/Turing_machine
https://en.wikipedia.org/wiki/Turing_machine
https://en.wikipedia.org/wiki/Turing_machine
https://en.wikipedia.org/wiki/Pushdown_automaton#cite_note-Hopcroft.Ullman.1979-2
https://en.wikipedia.org/wiki/Pushdown_automaton#cite_note-Hopcroft.Ullman.1979-2
https://en.wikipedia.org/wiki/Linear_bounded_automaton
https://en.wikipedia.org/wiki/Linear_bounded_automaton
https://en.wikipedia.org/wiki/Pushdown_automaton#cite_note-6
https://en.wikipedia.org/wiki/Pushdown_automaton#cite_note-6

data. In order to make a PDA as strong as a TM, we need to save somewhere the data lost through 'pop'. We

can achieve this by introducing a second stack. In the TM model of PDA of last paragraph, this is equivalent

to a TM with 3 tapes, where the first tape is the read-only input tape, and the 2nd and the 3rd tape are the

'push and pop' (stack) tapes. In order for such a PDA to simulate any given TM, we give the input of the

PDA to the first tape, while keeping both the stacks empty. It then goes on to push all the input from the

input tape to the first stack. When the entire input is transferred to the 1st stack, now we proceed like a

normal TM, where moving right on the tape is the same as popping a symbol from the 1st stack and

pushing a (possibly updated) symbol into the second stack, and moving le corresponds to popping a

symbol from the 2nd stack and pushing (a possibly updated) symbol into the first stack. We hence have a

PDA with 2 stacks that can simulate any TM.

A GPDA is a PDA that writes an entire string of some known length to the stack or removes an entire

string from the stack in one step.

A GPDA is formally defined as a 6-tuple:

where , and are defined the same way as a PDA.

:

is the transition function.

Computation rules for a GPDA are the same as a PDA except that the 's and 's are now strings

instead of symbols.

GPDA's and PDA's are equivalent in that if a language is recognized by a PDA, it is also recognized by a

GPDA and vice versa.

One can formulate an analytic proof for the equivalence of GPDA's and PDA's using the following

simulation:

Let be a transition of the GPDA

where .

Construct the following transitions for the PDA:

Generalized pushdown automaton (GPDA)

Pushdown automaton - Wikipedia https://en.wikipedia.org/wiki/Pushdown_automaton

6 of 9 2/17/23, 16:26

As a generalization of pushdown automata, Ginsburg, Greibach, and Harrison (1967) investigated stack

automata, which may additionally step le or right in the input string (surrounded by special endmarker

symbols to prevent slipping out), and step up or down in the stack in read-only mode.[5][6] A stack

automaton is called nonerasing if it never pops from the stack. e class of languages accepted by

nondeterministic, nonerasing stack automata is NSPACE(n2), which is a superset of the context-sensitive

languages.[1] e class of languages accepted by deterministic, nonerasing stack automata is

DSPACE(n⋅log(n)).[1]

An alternating pushdown automaton (APDA) is a pushdown automaton with a state set

▪ where .

States in and are called existential resp. universal. In an existential state an APDA

nondeterministically chooses the next state and accepts if at least one of the resulting computations accepts.

In a universal state APDA moves to all next states and accepts if all the resulting computations accept.

e model was introduced by Chandra, Kozen and Stockmeyer.[7] Ladner, Lipton and Stockmeyer[8] proved

that this model is equivalent to EXPTIME i.e. a language is accepted by some APDA if, and only if, it can be

decided by an exponential-time algorithm.

Aizikowitz and Kaminski[9] introduced synchronized alternating pushdown automata (SAPDA) that are

equivalent to conjunctive grammars in the same way as nondeterministic PDA are equivalent to context-

free grammars.

▪ Stack machine

▪ Context-free grammar

▪ Finite automaton

▪ Counter automaton

▪ Queue automaton

1. The set of even-length palindromes of bits can't be recognized by a deterministic
PDA, but is a context-free language, with the grammar S → ε | 0S0 | 1S1.[3]

2. Linear bounded automata are acceptors for the class of context-sensitive
languages,[2]: 225  which is a proper superclass of the context-free languages, and a
proper subclass of Turing-recognizable (i.e. recursively enumerable)
languages.[2]: 228 

Stack automaton

Alternating pushdown automata

See also

Notes

References

Pushdown automaton - Wikipedia https://en.wikipedia.org/wiki/Pushdown_automaton

7 of 9 2/17/23, 16:26

https://en.wikipedia.org/wiki/Pushdown_automaton#cite_note-7
https://en.wikipedia.org/wiki/Pushdown_automaton#cite_note-7
https://en.wikipedia.org/wiki/Pushdown_automaton#cite_note-8
https://en.wikipedia.org/wiki/Pushdown_automaton#cite_note-8
https://en.wikipedia.org/wiki/NSPACE
https://en.wikipedia.org/wiki/NSPACE
https://en.wikipedia.org/wiki/Context-sensitive_languages#Computational_properties
https://en.wikipedia.org/wiki/Context-sensitive_languages#Computational_properties
https://en.wikipedia.org/wiki/Context-sensitive_languages#Computational_properties
https://en.wikipedia.org/wiki/Context-sensitive_languages#Computational_properties
https://en.wikipedia.org/wiki/Pushdown_automaton#cite_note-Hopcroft.Ullman.1967-1
https://en.wikipedia.org/wiki/Pushdown_automaton#cite_note-Hopcroft.Ullman.1967-1
https://en.wikipedia.org/wiki/DSPACE
https://en.wikipedia.org/wiki/DSPACE
https://en.wikipedia.org/wiki/Pushdown_automaton#cite_note-Hopcroft.Ullman.1967-1
https://en.wikipedia.org/wiki/Pushdown_automaton#cite_note-Hopcroft.Ullman.1967-1
https://en.wikipedia.org/wiki/Ashok_K._Chandra
https://en.wikipedia.org/wiki/Ashok_K._Chandra
https://en.wikipedia.org/wiki/Dexter_Kozen
https://en.wikipedia.org/wiki/Dexter_Kozen
https://en.wikipedia.org/wiki/Larry_Stockmeyer
https://en.wikipedia.org/wiki/Larry_Stockmeyer
https://en.wikipedia.org/wiki/Pushdown_automaton#cite_note-ChandraKozen1981-9
https://en.wikipedia.org/wiki/Pushdown_automaton#cite_note-ChandraKozen1981-9
https://en.wikipedia.org/wiki/Richard_E._Ladner
https://en.wikipedia.org/wiki/Richard_E._Ladner
https://en.wikipedia.org/wiki/Richard_J._Lipton
https://en.wikipedia.org/wiki/Richard_J._Lipton
https://en.wikipedia.org/wiki/Larry_Stockmeyer
https://en.wikipedia.org/wiki/Larry_Stockmeyer
https://en.wikipedia.org/wiki/Pushdown_automaton#cite_note-LadnerLipton1984-10
https://en.wikipedia.org/wiki/Pushdown_automaton#cite_note-LadnerLipton1984-10
https://en.wikipedia.org/wiki/EXPTIME
https://en.wikipedia.org/wiki/EXPTIME
https://en.wikipedia.org/wiki/If,_and_only_if
https://en.wikipedia.org/wiki/If,_and_only_if
https://en.wikipedia.org/wiki/Pushdown_automaton#cite_note-AizikowitzKaminski2011-11
https://en.wikipedia.org/wiki/Pushdown_automaton#cite_note-AizikowitzKaminski2011-11
https://en.wikipedia.org/wiki/Conjunctive_grammar
https://en.wikipedia.org/wiki/Conjunctive_grammar
https://en.wikipedia.org/wiki/Stack_machine
https://en.wikipedia.org/wiki/Stack_machine
https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Finite_automaton
https://en.wikipedia.org/wiki/Finite_automaton
https://en.wikipedia.org/wiki/Counter_automaton
https://en.wikipedia.org/wiki/Counter_automaton
https://en.wikipedia.org/wiki/Queue_automaton
https://en.wikipedia.org/wiki/Queue_automaton
https://en.wikipedia.org/wiki/Palindrome#Computation_theory
https://en.wikipedia.org/wiki/Palindrome#Computation_theory
https://en.wikipedia.org/wiki/Context-free_language
https://en.wikipedia.org/wiki/Context-free_language
https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Pushdown_automaton#cite_note-3
https://en.wikipedia.org/wiki/Pushdown_automaton#cite_note-3
https://en.wikipedia.org/wiki/Pushdown_automaton#cite_note-Hopcroft.Ullman.1979-2
https://en.wikipedia.org/wiki/Pushdown_automaton#cite_note-Hopcroft.Ullman.1979-2
https://en.wikipedia.org/wiki/Recursively_enumerable
https://en.wikipedia.org/wiki/Recursively_enumerable
https://en.wikipedia.org/wiki/Pushdown_automaton#cite_note-Hopcroft.Ullman.1979-2
https://en.wikipedia.org/wiki/Pushdown_automaton#cite_note-Hopcroft.Ullman.1979-2

1. John E. Hopcroft; Jeffrey D. Ullman (1967). "Nonerasing Stack Automata" (https://doi.
org/10.1016%2Fs0022-0000%2867%2980013-8). Journal of Computer and System
Sciences. 1 (2): 166–186. doi:10.1016/s0022-0000(67)80013-8 (https://doi.org/10.1
016%2Fs0022-0000%2867%2980013-8).

2. John E. Hopcroft and Jeffrey D. Ullman (1979). Introduction to Automata Theory,
Languages, and Computation (https://archive.org/details/introductiontoau00hopc).
Reading/MA: Addison-Wesley. ISBN 0-201-02988-X.

3. John E. Hopcroft; Rajeev Motwani; Jeffrey D. Ullman (2003). Introduction to
Automata Theory, Languages, and Computation. Addison Wesley. Here: Sect.6.4.3,
p.249

4. Holzer, Markus; Kutrib, Martin (2019). "Non-Recursive Trade-Offs Are "Almost
Everywhere" ". Computing with Foresight and Industry. 11558: 25–36.
doi:10.1007/978-3-030-22996-2_3 (https://doi.org/10.1007%2F978-3-030-22996-2_
3). This follows from the quoted [22, Proposition 7] and the stated observation that
any deterministic pushdown automaton can be converted into an equivalent finite
automaton of at most doubly-exponential size.

5. Seymour Ginsburg, Sheila A. Greibach and Michael A. Harrison (1967). "Stack
Automata and Compiling" (https://doi.org/10.1145%2F321371.321385). J. ACM. 14
(1): 172–201. doi:10.1145/321371.321385 (https://doi.org/10.1145%2F321371.3213
85).

6. Seymour Ginsburg, Sheila A. Greibach and Michael A. Harrison (1967). "One-Way
Stack Automata". J. ACM. 14 (2): 389–418. doi:10.1145/321386.321403 (https://doi.
org/10.1145%2F321386.321403).

7. Chandra, Ashok K.; Kozen, Dexter C.; Stockmeyer, Larry J. (1981). "Alternation".
Journal of the ACM. 28 (1): 114–133. doi:10.1145/322234.322243 (https://doi.org/1
0.1145%2F322234.322243). ISSN 0004-5411 (https://www.worldcat.org/issn/0004-5
411).

8. Ladner, Richard E.; Lipton, Richard J.; Stockmeyer, Larry J. (1984). "Alternating
Pushdown and Stack Automata". SIAM Journal on Computing. 13 (1): 135–155.
doi:10.1137/0213010 (https://doi.org/10.1137%2F0213010). ISSN 0097-5397 (http
s://www.worldcat.org/issn/0097-5397).

9. Aizikowitz, Tamar; Kaminski, Michael (2011). "LR(0) Conjunctive Grammars and
Deterministic Synchronized Alternating Pushdown Automata". Computer Science –
Theory and Applications. Lecture Notes in Computer Science. Vol. 6651.
pp. 345–358. doi:10.1007/978-3-642-20712-9_27 (https://doi.org/10.1007%2F978-3-
642-20712-9_27). ISBN 978-3-642-20711-2. ISSN 0302-9743 (https://www.worldcat.
org/issn/0302-9743).

▪ Michael Sipser (1997). Introduction to the Theory of Computation (https://archive.or
g/details/introductiontoth00sips). PWS Publishing. ISBN 0-534-94728-X. Section 2.2:
Pushdown Automata, pp. 101–114.

▪ Jean-Michel Autebert, Jean Berstel, Luc Boasson, Context-Free Languages and Push-
Down Automata (http://www-igm.univ-mlv.fr/~berstel/Articles/1997CFLPDA.pdf), in:
G. Rozenberg, A. Salomaa (eds.), Handbook of Formal Languages, Vol. 1, Springer-
Verlag, 1997, 111–174.

▪ JFLAP (https://www.jflap.org), simulator for several types of automata including

External links

Pushdown automaton - Wikipedia https://en.wikipedia.org/wiki/Pushdown_automaton

8 of 9 2/17/23, 16:26

https://doi.org/10.1016%2Fs0022-0000%2867%2980013-8
https://doi.org/10.1016%2Fs0022-0000%2867%2980013-8
https://doi.org/10.1016%2Fs0022-0000%2867%2980013-8
https://doi.org/10.1016%2Fs0022-0000%2867%2980013-8
https://doi.org/10.1016%2Fs0022-0000%2867%2980013-8
https://doi.org/10.1016%2Fs0022-0000%2867%2980013-8
https://doi.org/10.1016%2Fs0022-0000%2867%2980013-8
https://doi.org/10.1016%2Fs0022-0000%2867%2980013-8
https://doi.org/10.1016%2Fs0022-0000%2867%2980013-8
https://en.wikipedia.org/wiki/Doi_(identifier)
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1016%2Fs0022-0000%2867%2980013-8
https://doi.org/10.1016%2Fs0022-0000%2867%2980013-8
https://doi.org/10.1016%2Fs0022-0000%2867%2980013-8
https://doi.org/10.1016%2Fs0022-0000%2867%2980013-8
https://doi.org/10.1016%2Fs0022-0000%2867%2980013-8
https://doi.org/10.1016%2Fs0022-0000%2867%2980013-8
https://doi.org/10.1016%2Fs0022-0000%2867%2980013-8
https://doi.org/10.1016%2Fs0022-0000%2867%2980013-8
https://doi.org/10.1016%2Fs0022-0000%2867%2980013-8
https://archive.org/details/introductiontoau00hopc
https://archive.org/details/introductiontoau00hopc
https://archive.org/details/introductiontoau00hopc
https://archive.org/details/introductiontoau00hopc
https://archive.org/details/introductiontoau00hopc
https://archive.org/details/introductiontoau00hopc
https://archive.org/details/introductiontoau00hopc
https://archive.org/details/introductiontoau00hopc
https://archive.org/details/introductiontoau00hopc
https://archive.org/details/introductiontoau00hopc
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-201-02988-X
https://en.wikipedia.org/wiki/Special:BookSources/0-201-02988-X
https://en.wikipedia.org/wiki/Special:BookSources/0-201-02988-X
https://en.wikipedia.org/wiki/Doi_(identifier)
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1007%2F978-3-030-22996-2_3
https://doi.org/10.1007%2F978-3-030-22996-2_3
https://doi.org/10.1007%2F978-3-030-22996-2_3
https://doi.org/10.1007%2F978-3-030-22996-2_3
https://doi.org/10.1007%2F978-3-030-22996-2_3
https://doi.org/10.1007%2F978-3-030-22996-2_3
https://doi.org/10.1007%2F978-3-030-22996-2_3
https://doi.org/10.1007%2F978-3-030-22996-2_3
https://doi.org/10.1007%2F978-3-030-22996-2_3
https://doi.org/10.1145%2F321371.321385
https://doi.org/10.1145%2F321371.321385
https://doi.org/10.1145%2F321371.321385
https://doi.org/10.1145%2F321371.321385
https://doi.org/10.1145%2F321371.321385
https://doi.org/10.1145%2F321371.321385
https://doi.org/10.1145%2F321371.321385
https://doi.org/10.1145%2F321371.321385
https://en.wikipedia.org/wiki/Doi_(identifier)
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1145%2F321371.321385
https://doi.org/10.1145%2F321371.321385
https://doi.org/10.1145%2F321371.321385
https://doi.org/10.1145%2F321371.321385
https://doi.org/10.1145%2F321371.321385
https://doi.org/10.1145%2F321371.321385
https://doi.org/10.1145%2F321371.321385
https://doi.org/10.1145%2F321371.321385
https://doi.org/10.1145%2F321371.321385
https://en.wikipedia.org/wiki/Doi_(identifier)
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1145%2F321386.321403
https://doi.org/10.1145%2F321386.321403
https://doi.org/10.1145%2F321386.321403
https://doi.org/10.1145%2F321386.321403
https://doi.org/10.1145%2F321386.321403
https://doi.org/10.1145%2F321386.321403
https://doi.org/10.1145%2F321386.321403
https://doi.org/10.1145%2F321386.321403
https://doi.org/10.1145%2F321386.321403
https://en.wikipedia.org/wiki/Doi_(identifier)
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1145%2F322234.322243
https://doi.org/10.1145%2F322234.322243
https://doi.org/10.1145%2F322234.322243
https://doi.org/10.1145%2F322234.322243
https://doi.org/10.1145%2F322234.322243
https://doi.org/10.1145%2F322234.322243
https://doi.org/10.1145%2F322234.322243
https://doi.org/10.1145%2F322234.322243
https://doi.org/10.1145%2F322234.322243
https://en.wikipedia.org/wiki/ISSN_(identifier)
https://en.wikipedia.org/wiki/ISSN_(identifier)
https://www.worldcat.org/issn/0004-5411
https://www.worldcat.org/issn/0004-5411
https://www.worldcat.org/issn/0004-5411
https://www.worldcat.org/issn/0004-5411
https://www.worldcat.org/issn/0004-5411
https://www.worldcat.org/issn/0004-5411
https://www.worldcat.org/issn/0004-5411
https://www.worldcat.org/issn/0004-5411
https://www.worldcat.org/issn/0004-5411
https://en.wikipedia.org/wiki/Doi_(identifier)
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1137%2F0213010
https://doi.org/10.1137%2F0213010
https://doi.org/10.1137%2F0213010
https://doi.org/10.1137%2F0213010
https://doi.org/10.1137%2F0213010
https://doi.org/10.1137%2F0213010
https://en.wikipedia.org/wiki/ISSN_(identifier)
https://en.wikipedia.org/wiki/ISSN_(identifier)
https://www.worldcat.org/issn/0097-5397
https://www.worldcat.org/issn/0097-5397
https://www.worldcat.org/issn/0097-5397
https://www.worldcat.org/issn/0097-5397
https://www.worldcat.org/issn/0097-5397
https://www.worldcat.org/issn/0097-5397
https://www.worldcat.org/issn/0097-5397
https://www.worldcat.org/issn/0097-5397
https://www.worldcat.org/issn/0097-5397
https://en.wikipedia.org/wiki/Doi_(identifier)
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1007%2F978-3-642-20712-9_27
https://doi.org/10.1007%2F978-3-642-20712-9_27
https://doi.org/10.1007%2F978-3-642-20712-9_27
https://doi.org/10.1007%2F978-3-642-20712-9_27
https://doi.org/10.1007%2F978-3-642-20712-9_27
https://doi.org/10.1007%2F978-3-642-20712-9_27
https://doi.org/10.1007%2F978-3-642-20712-9_27
https://doi.org/10.1007%2F978-3-642-20712-9_27
https://doi.org/10.1007%2F978-3-642-20712-9_27
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-3-642-20711-2
https://en.wikipedia.org/wiki/Special:BookSources/978-3-642-20711-2
https://en.wikipedia.org/wiki/Special:BookSources/978-3-642-20711-2
https://en.wikipedia.org/wiki/ISSN_(identifier)
https://en.wikipedia.org/wiki/ISSN_(identifier)
https://www.worldcat.org/issn/0302-9743
https://www.worldcat.org/issn/0302-9743
https://www.worldcat.org/issn/0302-9743
https://www.worldcat.org/issn/0302-9743
https://www.worldcat.org/issn/0302-9743
https://www.worldcat.org/issn/0302-9743
https://www.worldcat.org/issn/0302-9743
https://www.worldcat.org/issn/0302-9743
https://www.worldcat.org/issn/0302-9743
https://en.wikipedia.org/wiki/Michael_Sipser
https://en.wikipedia.org/wiki/Michael_Sipser
https://archive.org/details/introductiontoth00sips
https://archive.org/details/introductiontoth00sips
https://archive.org/details/introductiontoth00sips
https://archive.org/details/introductiontoth00sips
https://archive.org/details/introductiontoth00sips
https://archive.org/details/introductiontoth00sips
https://archive.org/details/introductiontoth00sips
https://archive.org/details/introductiontoth00sips
https://archive.org/details/introductiontoth00sips
https://archive.org/details/introductiontoth00sips
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-534-94728-X
https://en.wikipedia.org/wiki/Special:BookSources/0-534-94728-X
https://en.wikipedia.org/wiki/Special:BookSources/0-534-94728-X
http://www-igm.univ-mlv.fr/~berstel/Articles/1997CFLPDA.pdf
http://www-igm.univ-mlv.fr/~berstel/Articles/1997CFLPDA.pdf
http://www-igm.univ-mlv.fr/~berstel/Articles/1997CFLPDA.pdf
http://www-igm.univ-mlv.fr/~berstel/Articles/1997CFLPDA.pdf
http://www-igm.univ-mlv.fr/~berstel/Articles/1997CFLPDA.pdf
http://www-igm.univ-mlv.fr/~berstel/Articles/1997CFLPDA.pdf
http://www-igm.univ-mlv.fr/~berstel/Articles/1997CFLPDA.pdf
http://www-igm.univ-mlv.fr/~berstel/Articles/1997CFLPDA.pdf
https://www.jflap.org/
https://www.jflap.org/
https://www.jflap.org/
https://www.jflap.org/
https://www.jflap.org/
https://www.jflap.org/

nondeterministic pushdown automata

▪ CoAn (https://www.elstel.org/coan), another simulator for several machine types
including nondeterministic pushdown automata (C++, Windows, Linux, MacOS)

Retrieved from "https://en.wikipedia.org/w/index.php?title=Pushdown_automaton&oldid=1136388051"

Pushdown automaton - Wikipedia https://en.wikipedia.org/wiki/Pushdown_automaton

9 of 9 2/17/23, 16:26

https://www.elstel.org/coan
https://www.elstel.org/coan
https://www.elstel.org/coan
https://www.elstel.org/coan
https://www.elstel.org/coan
https://www.elstel.org/coan
https://en.wikipedia.org/w/index.php?title=Pushdown_automaton&oldid=1136388051
https://en.wikipedia.org/w/index.php?title=Pushdown_automaton&oldid=1136388051

