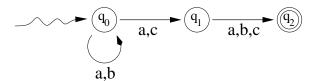

University of Nevada, Las Vegas Computer Science 456/656 Spring 2025 Assignment 3: Due Saturday February 8, 2025, 11:59 PM

Name:_____

You are permitted to work in groups, get help from others, read books, and use the internet. You will receive a message from the graduage assistant, Sepideh Farivar, telling you how to turn in the assignment.

- 1. Identify which machine accepts the language defined by each regular expression.
 - (a) $a^* + b^*$ (e) $a(aa + b)^*$ (b) λ (f) a^*b^*
 - (c) a^* (g) $(a+b)^*$
 - (d) \emptyset (h) $(ab)^*$


- 2. True or False. If the answer is unknown to science at this time, write **O** for Open.
 - (a) _____ If L is any language, L + L = L
 - (b) _____ If L is any language, $L \cap L = L$
 - (c) _____ If L is any language, $\{\lambda\} \in L^*$.
 - (d) _____ If L is any language, L + L = L
 - (e) _____ If L is any language, $L \cap L = L$
 - (f) _____ If L is any language, $\{\lambda\} \in L^*$.
 - (g) _____ Any language consisting of all decimal numerals of an arithmetic sequence is regular.
 - (h) _____ Let L be a regular binary language. Let L' be the language of all strings obtained from members of L by substituting ab for 0 and c for 1. Then L' must be regular. For example, if $L = \{0, 10, 10011\}$ then $L' = \{ab, cab, cababcc\}$.
 - (i) \mathcal{P} -TIME = \mathcal{NP} .

- 3. Let $L_1 = \{a, ab\}$ and $L_2 = \{a, ba\}$. How many strings are there in the language L_1L_2 ?
- 4. The following program decides whether a given integer n is prime.

```
Read n
For all i from 2 to n-1
If(n%i = 0) return False.
Return True.
```

At first glance you would say it is a polynomial time algorithm. But it isn't. In fact, it takes exponential time. Explain.

5. Any NFA with n states is equivalent to some DFA with at most 2^n states, counting the dead state. Draw a DFA equivalent to the following three state NFA.

