University of Nevada, Las Vegas Computer Science 456/656 Spring 2025 Assignment 4: Due Saturday March 1, 2025, 11:59 PM

Name:_____

You are permitted to work in groups, get help from others, read books, and use the internet. You will receive a message from the graduage assistant, Louis, telling you how to turn in the assignment.

If w is any string, we write w^{-1} for the *inverse* of w. For example, if w = abcca then $w^{-1} = accba$. A *palindrome* is a string which is equal to its own inverse, such as "level." We write $\#_0(w)$ for the number of zeros in w, and $\#_1(w)$ for the number of ones.

- 1. True or False. If the answer is unknown to science at this time, write \mathbf{O} for Open.
 - (a) _____ Let L be the language over $\{a, b, c\}$ consisting of all strings which have more a's than b's and more b's than c's. There is some PDA that accepts L.
 - (b) _____ The union of any two context-free languages must be context-free
 - (c) _____ The language $\{a^n b^n \mid n \ge 0\}$ is context-free.
 - (d) _____ The language $\{a^n b^n c^n \mid n \ge 0\}$ is context-free.
 - (e) _____ The language $\{a^i b^j c^k \mid j = i + k\}$ is context-free.
 - (f) _____ The intersection of any regular language with any context-free language is context-free.
 - (g) _____ The intersection of any two context-free languages is context-free.
 - (h) \dots If L is a context-free language over an alphabet with just one symbol, then L is regular.
 - (i) _____ There is a deterministic parser for any context-free grammar.
 - (j) _____ The set of strings that your high school algebra teacher would accept as legitimate expressions is a context-free language.
 - (k) _____ The Kleene closure of any context-free language is context-free.
 - (l) _____ Every regular language is context-free.
 - (m) $_$ Every context-free language is in \mathcal{P} .
 - (n) _____ Every language accepted by a non-deterministic machine is accepted by some deterministic machine.
 - (o) _____ The problem of whether a given string is generated by a given context-free grammar is decidable.
 - (p) _____ If G is a context-free grammar, the question of whether $L(G) = \emptyset$ is decidable.
 - (q) _____ Every context-free grammar is equivalent to some Chomsky normal form grammar.
 - (r) _____ If L_1 is \mathcal{NP} complete qand L_2 is \mathcal{NP} , there is a \mathcal{P} -TIME reduction from L_1 to L_2 .
 - (s) If L_1 is \mathcal{NP} -hard and there is a \mathcal{P} -TIME reduction of L_1 to L_2 , then L_2 must be \mathcal{NP} -hard.
 - (t) _____ The partition problem is \mathcal{NP} complete.

- 2. Give two context-free languages whose intersection is not context-free.
- 3. Identify which grammar generates each language. In each case, the language is over the binary alphabet $\Sigma = \{0, 1\}.$
 - (a) The language of all palindromes of even length over Σ .
 - (b) The language of all palindromes of odd length over Σ .
 - (c) The language of all strings w over Σ such that $\#_0(w) = \#_1(w)$.
 - (d) The language of all strings w over Σ such that $\#_0(w) = \#_1(w)$ and each prefix of w has at least as many zeros as ones.
 - (e) The set of all binary numerals for multiples of three, where leading zeros are allowed.

(i) $S \to 0S1S$ $S \to \lambda$ (ii) $S \to 0S0$ $S \to 1S1$ $S \to \lambda$ (iii) $S \to 0S0$ $S \to 1S1$ $S \to 0$ $S \to 1$ (iv) $S \rightarrow 0S1S$ $S \to 1S0S$ $S \to \lambda$ (v) $S \to 0S$ $S \rightarrow 1A$ $A \rightarrow 1S$ $A \rightarrow 0B$ $B \rightarrow 1B$ $B \rightarrow 0A$ $S \to 0$

- 4. The following grammar G_1 generates a simple algebraic language. Prove that G_1 is ambiguous by drawing two different parse trees for some string in $L(G_1)$. The start symbol of G_1 is E.
 - 1. $E \rightarrow E + E$ 2. $E \rightarrow E * E$ 3. $E \rightarrow (E)$ 4. $E \rightarrow x$
 - 5. $E \rightarrow y$
 - 6. $E \rightarrow z$
- 5. The grammar G_2 , given below, is equivalent to G_1 , but is unambiguous. Draw a parse tree for (x + y) * z + y + x using G_2 . (*E* stands for "expression," *T* stands for "term," and *F* stands for "factor.")
 - $\begin{array}{ll} 1. & E \rightarrow E + T \\ 2. & E \rightarrow T \\ 3. & T \rightarrow T * F \\ 4. & T \rightarrow F \\ 5. & F \rightarrow (E) \\ 6. & F \rightarrow x \\ 7. & F \rightarrow y \\ 8. & F \rightarrow z \end{array}$

6. Consider the following list of languages. In each case, the alphabet is $\Sigma = \{a, b\}$.

- (a) The language L_1 consisting of all strings which have an equal number of each symbol.
- (b) The language $L_2 \subseteq L_1$ where each prefix of any string in L_2 has at least as many a's as b's.
- (c) The language of all even length palindromes.

Each of the above languages is accepted by one of the PDA shown below. Which one?

- 7. A Chomsky normal form grammar (CNF grammar) is defined to be a context-free grammar with start symbol S such that:
 - (a) The right side of any production is either two variables, one terminal, or the empty string.
 - (b) S may not be on the right side of any production.
 - (c) If the right side of a production is the empty string, the left side is S.

Here is a simple example of a CNF grammar, which generates $\{a^n b^n \mid n \ge 0\}$:

 $\begin{array}{l} S \rightarrow XB \\ X \rightarrow AY \\ Y \rightarrow XB \\ A \rightarrow a \\ X \rightarrow a \\ B \rightarrow b \end{array}$

Let G be the following ambiguous CF grammar, that you have seen before:

 $\begin{array}{l} S \rightarrow iS \\ S \rightarrow iSeS \\ S \rightarrow a \end{array}$

Construct a CNF grammar equivalent to G.