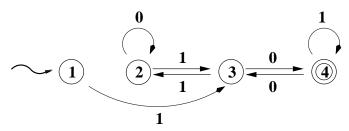
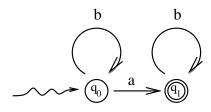

University of Nevada, Las Vegas Computer Science 456/656 Spring 2025 Answers to Assignment 2: Due Saturday February 1, 2025


1. Let M_1 be the DFA shown below.

Let M_2 be the DFA shown below.

Let M_3 be the DFA shown below.

Which of the following languages is accepted by M_1 ? By M_2 ? By M_3 ?


 M_1 accepts (b).

 M_2 accepts (a).

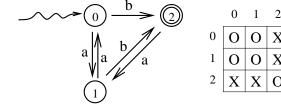
 M_3 accepts (c).

- (a) The language of all binary strings in which every substring 00 is followed by 1.
- (b) All strings over $\{a, b\}$ which end in b and which do not contain the substring bb.
- (c) The language of all binary numerals for positive integers equivalent to 2 modulo 3.
- (d) The language of all strings over $\{a, b\}$ in which every b is followed by a.

Construct a DFA which accepts the language $\{b^iab^j: i, j \geq 0\}$, the language of all strings over $\{a, b\}$ which contain exactly one a. Your figure need not show the dead state.

2. Recall that \emptyset is the empty language. If L is some language, what is the concatenation $\emptyset L$?

Ø


3. Let $L_1 = \{\lambda\}$. the language consisting of only the empty string. If L_2 is some other language, what is the concatenation L_1L_2 ?

 L_2

- 4. Is concatenation of languages commutative? That is, is the equation $L_1L_2 = L_2L_1$ always true?
 - No. For example, if $L_1 = \{a\}$ and $L_2 = \{b\}$, then $L_1L_2 = \{ab\}$ and $L_2L_1 = \{ba\}$.
- 5. Which of the following is true:
 - (a) If L is any language, $L^0 = L$.
 - (b) If L is any language, $L^0 = \emptyset$.
 - (c) If L is any language, $L^0 = \{\lambda\}$.

$$L^0 = \{\lambda\}$$

- 6. Does concatenation of languages distribute over union? That is, is $L_1(L_2 + L_3) = L_1L_2 + L_1L_3$ always true?
 - Yes. To convince yourself, work out a few tiny examples.
- 7. What is \emptyset^* , the Kleene closure of the empty language?
 - $\{\lambda\}$. See problem 5 above.
- 8. True(T) or False(F).
 - i **F** Concatenation is commutative. That is, $L_1L_2 = L_2L_1$ for any languages L_1 and L_2 .
 - ii T Concatenation is associative. That is, $(L_1L_2)L_3 = L_1(L_2L_3)$ for any languages L_1 , L_2 , and L_3 .
 - iii T The intersection of any two regular languages is regular.
 - iv T The complement of any regular languages is regular.
 - v T The Kleene closure of any regular languages is regular.
- 9. The DFA M_1 shown in Problem 1 is not minimal, that is, it is equivalent to a DFA with fewer states. Can you draw a state diagram of that DFA? Your figure need not show the dead state.

