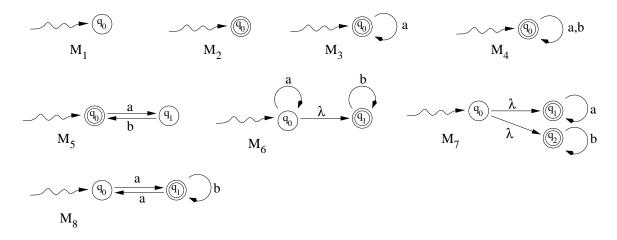
University of Nevada, Las Vegas Computer Science 456/656 Spring 2025

Answers to Assignment 3: Due Saturday February 8, 2025

- 1. Identify which machine accepts the language defined by each regular expression.
 - (a) $a^* + b^* M_7$

(e) $a(aa + b)^* M_8$

(b) λM_2


(f) $a^*b^* M_6$

(c) $a^* M_3$

(g) $(a+b)^* M_4$

(d) $\emptyset M_1$

(h) $(ab)^* M_5$

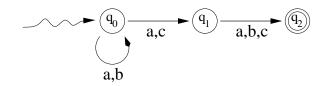
- 2. True or False. If the answer is unknown to science at this time, write **O** for Open.
 - (a) **T** If L is any language, L + L = L
 - (b) **T** If L is any language, $L \cap L = L$
 - (c) **F** If L is any language, $\{\lambda\} \in L^*$. $\lambda \in L^*$.
 - (d) **T** If L is any language, L + L = L
 - (e) **T** If L is any language, $L \cap L = L$
 - (g) T Any language consisting of all decimal numerals of an arithmetic sequence is regular.
 - (h) **T** Let L be a regular binary language. Let L' be the language of all strings obtained from members of L by substituting ab for 0 and c for 1. Then L' must be regular. For example, if $L = \{0, 10, 10011\}$ then $L' = \{ab, cab, cababec\}$.
 - (i) **O** \mathcal{P} -TIME = $\mathcal{N}\mathcal{P}$.
- 3. Let $L_1 = \{a, ab\}$ and $L_2 = \{a, ba\}$. How many strings are there in the language L_1L_2 ?

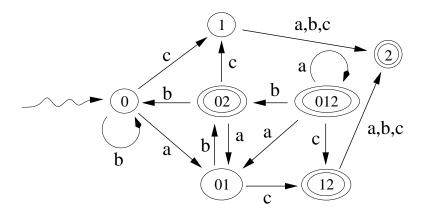
3

 $L_1L_2 = \{aa, aba, abba\}$

4. The following program decides whether a given integer n is prime.

Read n


For all i from 2 to n-1 If(n%i = 0) return False.


Return True.

At first glance you would say it is a polynomial time algorithm. But it isn't. In fact, it takes exponential time. Explain.

Answer will be posted later.

5. Any NFA with n states is equivalent to some DFA with at most 2^n states, counting the dead state. Draw a DFA equivalent to the following three state NFA. The empty set is a dead state. You are not required to include it in the figure.

