University of Nevada, Las Vegas Computer Science 456/656 Spring 2025 Answers to Assignment 4: Due Saturday March 1, 2025

Namo		
1 1 alli C	 	

You are permitted to work in groups, get help from others, read books, and use the internet. You will receive a message from the graduage assistant, Louis, telling you how to turn in the assignment.

If w is any string, we write w^{-1} for the *inverse* of w. For example, if w = abcca then $w^{-1} = accba$. A palindrome is a string which is equal to its own inverse, such as "level." We write $\#_0(w)$ for the number of zeros in w, and $\#_1(w)$ for the number of ones.

- 1. True or False. If the answer is unknown to science at this time, write **O** for Open.
 - (a) **F** Let L be the language over $\{a, b, c\}$ consisting of all strings which have more a's than b's and more b's than c's. There is some PDA that accepts L.
 - (b) T The union of any two context-free languages must be context-free
 - (c) T The language $\{a^nb^n \mid n \geq 0\}$ is context-free, hence is accepted by a PDA.
 - (d) **F** The language $\{a^nb^nc^n \mid n \geq 0\}$ is context-free.
 - (e) **T** The language $\{a^ib^jc^k \mid j=i+k\}$ is context-free.
 - (f) T The intersection of any regular language with any context-free language is context-free.
 - (g) F The intersection of any two context-free languages is context-free.
 - (h) \mathbf{T} If L is a context-free language over an alphabet with just one symbol, then L is regular.
 - (i) T There is a deterministic parser for any context-free grammar.
 - (j) T The set of strings that your high school algebra teacher would accept as legitimate expressions is a context-free language.
 - (k) T The Kleene closure of any context-free language is context-free.
 - (1) T Every regular language is context-free.
 - (m) **T** Every context-free language is in \mathcal{P} .
 - (n) **T** Every language accepted by a non-deterministic machine is accepted by some deterministic machine.
 - (o) T The problem of whether a given string is generated by a given context-free grammar is decidable.
 - (p) **T** If G is a context-free grammar, the question of whether $L(G) = \emptyset$ is decidable.
 - (q) T Every context-free grammar is equivalent to some Chomsky normal form grammar.
 - (r) **F** If L_1 is \mathcal{NP} complete and L_2 is \mathcal{NP} , there is a \mathcal{P} -TIME reduction from L_1 to L_2 .
 - (s) T If L_1 is \mathcal{NP} -hard and there is a \mathcal{P} -TIME reduction of L_1 to L_2 , then L_2 must be \mathcal{NP} -hard.
 - (t) **T** The partition problem is \mathcal{NP} complete.

2. Give two context-free languages whose intersection is not context-free.

There are many examples. Here's one. Let $L_1 = \{a^i b^i c^j : i, j \geq 0\}$, and Let $L_2 = \{a^i b^j c^j : i, j, \geq 0\}$, Then L_1 , L_2 are generated by the context-free grammars:

$$\begin{array}{ccc} S \rightarrow AC & S \rightarrow AC \\ A \rightarrow aAb & A \rightarrow aA \end{array}$$

$$A \to \lambda$$
 $A \to \lambda$

$$C \to Cc$$
 $C \to bCc$

$$C \to \lambda$$
 $C \to \lambda$

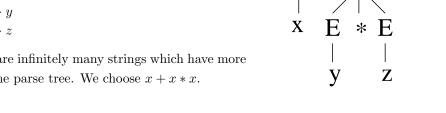
 $L_1 \cap L_2 = \{a^n b^n c^n : n \ge 0\}$, which is not context-free.

- 3. Identify which grammar generates each language. In each case, the language is over the binary alphabet $\Sigma = \{0, 1\}.$
 - (a) The language of all palindromes of even length over Σ .
 - Generated by Grammar (ii).
 - (b) The language of all palindromes of odd length over Σ .
 - Generated by Grammar (iii).
 - (c) The language of all strings w over Σ such that $\#_0(w) = \#_1(w)$.
 - Generated by Grammar (iv).
 - (d) The language of all strings w over Σ such that $\#_0(w) = \#_1(w)$ and each prefix of w has at least as many zeros as ones.
 - Generated by Grammar (i).
 - (e) The set of all binary numerals for multiples of three, where leading zeros are allowed.
 - Generated by Grammar (v).

(i) (ii) (iii) (iv) (v)
$$S \rightarrow 0S1S$$
 $S \rightarrow 0S0$ $S \rightarrow 0S1S$ $S \rightarrow 0S$ $S \rightarrow 0S$ $S \rightarrow 0S$ $S \rightarrow 1S1$ $S \rightarrow 1S1$ $S \rightarrow 1S0S$ $S \rightarrow 1A$ $S \rightarrow 1$ S

- 4. The following grammar G_1 generates a simple algebraic language. Prove that G_1 is ambiguous by drawing two different parse trees for some string in $L(G_1)$. The start symbol of G_1 is E.
 - 1. $E \rightarrow E + E$
 - $2.\ E\to E*E$
 - 3. $E \rightarrow (E)$
 - 4. $E \rightarrow x$
 - 5. $E \rightarrow y$
 - 6. $E \rightarrow z$

There are infinitely many strings which have more than one parse tree. We choose x + x * x.



- 5. The grammar G_2 , given below, is equivalent to G_1 , but is unambiguous. Draw a parse tree for w = (x + y) * z + y + xusing G_2 . (E stands for "expression," T stands for "term," and F stands for "factor.")
 - 1. $E \rightarrow E + T$
 - 2. $E \rightarrow T$
 - 3. $T \rightarrow T * F$
 - 4. $T \rightarrow F$
 - 5. $F \rightarrow (E)$
 - 6. $F \rightarrow x$
 - 7. $F \rightarrow y$
 - 8. $F \rightarrow z$

Using G_1 , the reverse rightmost derivation of w is 4513425161. Using G_2 , the reverse rightmost derivation of w is 64274154632741841.



E

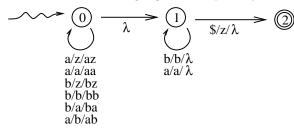
y

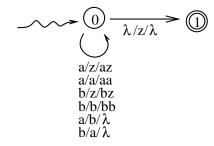
X

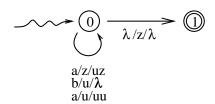
 \mathbf{Z}

- 6. Consider the following list of languages. In each case, the alphabet is $\Sigma = \{a, b\}$.
 - (a) The language L_1 consisting of all strings which have an equal number of each symbol. Accepted by the second PDA below.
 - (b) The language $L_2 \subseteq L_1$ where each prefix of any string in L_2 has at least as many a's as b's. Accepted by the third PDA below.
 - (c) The language of all even length palindromes. Accepted by the first PDA below.

Each of the above languages is accepted by one of the PDA shown below. Which one?







- 7. A Chomsky normal form grammar (CNF grammar) is defined to be a context-free grammar with start symbol S such that:
 - (a) The right side of any production is either two variables, one terminal, or the empty string.
 - (b) S may not be on the right side of any production.
 - (c) If the right side of a production is the empty string, the left side is S.

Here is a simple example of a CNF grammar, which generates $\{a^n b^n \mid n \geq 0\}$:

$$S \to XB$$

$$X \to AY$$

$$Y \to XB$$

$$A \to a$$

$$X \to a$$

$$B \rightarrow b$$

Let G be the following ambiguous CF grammar, that you have seen before:

 $S \to i S$

 $S \to i SeS$

 $S \to a$

Construct a CNF grammar equivalent to G.

Since S is not allowed on the right hand side of any production, we introduce the variable T which is equivalent to S, but which is allowed on the rhs.

 $S \to IT$

 $S \to a$

 $S \to AB$

 $T \to IT$

 $T \to a$

 $T \to AB$

 $A \to IT$

 $B\to ET$

 $I \rightarrow i$

 $E \to e$

Can you think of a better solution, that is, with fewer productions?