University of Nevada, Las Vegas Computer Science 456/656 Spring 2025 Answers to Assignment 8: Due Saturday May 3, 2025

1. Work Exercise 1 on Handout/reglrNC.pdf.

Exercise 1:	Let M be the NFA with tran-
sition matrix	

	a	b
0	0, 1	Ø
1	Ø	1,2
2	0	0

where 2 is the final state.

For $w \in \{a, b\}^*$, $w \in L(M)$ if and only if $T_w[0][2] = 1$, since 0 is the start state and the only final state is 2. Use the tournament method shown above to determine whether $aabab \in L(M)$.

Since $T_{aabab}[0][2] = 0$, We conclude that $abaab \notin L(M)$.

- 2. Work Exercies 1, 2, 3, 4 on Handout/indSS.pdf.
- 3. Give a definition of the class \mathcal{P} -space.

A language L is in the class \mathcal{P} -SPACE if there is a \mathcal{P} -SPACE algorithm which decides L.

- 4. Give a definition of the class \mathcal{P} -SPACE-complete. L is \mathcal{P} -SPACE complete if there is a \mathcal{P} -TIME reduction of any \mathcal{P} -SPACE language to L.
- 5. Let $L = \{a^n b^n : n \ge 0\}$. Prove that L is \mathcal{NC} . (Do not cite the fact that all CF languages are \mathcal{NC} .) Given a string $w \in \{a, b\}^*$:

1. Assign a processor to each of the approximately 2n blocks of size a power of 2 used during the Tournament procedure. Each processor connects with its two parents and its one child. The resulting network has diameter $O(\log n)$.

2. If any block contains symbol other than a or b, then $w \notin L$, and that fact is broadcast to all processors in $O(\log n)$ time.

3. If any processor detects that its block contains the substring $ba, w \notin L$, and that fact is broadcast to all processors in $O(\log n)$ time.

4. Assign the value 1 each a and 0 to each b. In $O(\log n)$ time, compute and broadcast the numbers of a's and b's in w. If the root processor detects that these numbers are different, $w \notin L$, and that fact is broadcast to all processors. Otherwise, the root processor will detect that the numbers are equal and thus $w \in L$, and that fact is broadcast, concluding the algorithm in logarithmic time.

Pseudopolynomial Algorithm for Subset Sum

We define an instance of Subset_Sum, the subset sum problem to be a string $\langle X \rangle \langle K \rangle$ where $X = x_1, x_2, \ldots x_n$. is a list of positive integers and K is an integer. A solution to that instance is a subsequence of X whose total is K. Without loss of generality, $x_i \leq K$ for each i, since otherwise x_i could not be part of the solution.

We have already proved that Subset_Sum is \mathcal{NP} complete. We now give a dynamic programming algorithm \mathcal{A} of time complexity O(nK).

Definition of \mathcal{A} . Let A[n+1][K+1] be the Boolean matrix where A[i][k] means there is a subsequence of $x_1, \ldots x_i$ whose sum is k.

```
For k from 1 to K

A[0][k] = 0
A[0][0] = 1
For i from 1 to n

For k from 0 to K

A[i][k] = A[i-1][k]
If k \ge x_i and A[i][k - x_i]

A[i][k] = 1
Return A[n][K]
```

Exercise 2: Use the algorithm \mathcal{A} to decide whether there is a sublist of (6, 10, 7, 17, 3, 7, 10, 3, 4) whose sum is 25. (In a sequence, there can be duplicate terms.)

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10	1	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
7	1	0	0	0	0	0	1	1	0	0	1	0	0	1	0	0	1	1	0	0	0	0	0	1	0	0
17	1	0	0	0	0	0	1	1	0	0	1	0	0	1	0	0	1	1	0	0	0	0	0	1	1	0
3	1	0	0	1	0	0	1	1	0	1	1	0	0	1	0	0	1	1	0	1	1	0	0	1	1	0
7	1	0	0	1	0	0	1	1	0	1	1	0	0	1	1	0	1	1	0	1	1	0	0	1	1	0
10	1	0	0	1	0	0	1	1	0	1	1	0	0	1	1	0	1	1	0	1	1	0	0	1	1	0
3	1	0	0	1	0	0	1	1	0	1	1	0	1	1	1	0	1	1	0	1	1	0	1	1	1	0
4	1	0	0	1	1	0	1	1	0	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	0

Since there is a 0 in the last row last column, there is no solution.

Exercise 3: Why can't we call \mathcal{A} "polynomial"? The input size is $O(\sum_{i=1}^{n} \log_2 x_i + \log_2 K)$, and that value is not, in general, a polynomial function of nK.

Exercise 4: However, \mathcal{A} can be made \mathcal{P} -TIME, if the terms of the sequence are restricted to numbers with at most 2 digits. Explain.

The number of bits of input is $O(\sum_{i=1}^{n} \log_2 x_i + \log_2 K)$. If K is greater than the sum of the terms of the sequence, then there is no solution, hence the answer can be given in O(n) time. This means that $\log_2 K = O(n)$. and thus the input size is O(n). Thus, we can assume that K < 99n. Thus $\log_2 K) = O(n)$, and hence the input size is O(n). The time complexity of the algorithm is $O(nK) = O(nY_2)$,