Boolean Satisfiability

BOOL is the language consisting of all Boolean expressions, where we allow the Boolean operators
in Table 1 below.

1. ! not

2. 4+ or

3. * and

4. = implies
5. = equal
6. # not equal

Table 1: Boolean Operators

An assignment of a Boolean expression F is an assignment of a truth value to every variable of
E. An assignment is satisfying if the resulting value of E is 1 (true). E is satisfiable if it has a
satisfying assignment. SAT C BOOL is the subset consisting of all satisfiable expressions.

SAT is a very important problem in a practical sense. Solving instances of SAT has applications to
software verification, program analysis, constraint solving, artificial intelligence, electronic design
automation, and operations research. No known deterministic algorithm solves SAT in less than
exponential time. However, due to the importance of the problem, a great deal of effort has been
expended trying to improve SAT-solvers, some of which use randomization. Read the Wikipedia
article: https://en.wikipedia.org/wiki/SAT_solver

Reductions

A reduction of a language L; C X7 to a language Lo C X3 is a function R : £] — X5 such that
w € Ly if and only if R(w) € Lo. A language L is defined to be N"P—complete if there is a P-TIME
reduction of every NP language to L.

Theorem 1 (Cook-Levin) Every N'P-TIME language has a P-TIME reduction to SAT.
Thus, by definition, SAT is N'P—complete. You can find the proof of Theorem 1 on the internet.

Theorem 2 If Ly is N'P-complete, Lo is N'P, and there is a P-TIME reduction of Ly to La,
then Lo is N'P—complete.

Starting with SAT, many languages have been shown to be N'P—complete, using Theorem 2, and
the list continues to grow.



Conjunctive Normal Form (CNF)

A Boolean expression F is in CNF if it is the conjunction of clauses, each of which is the disjunction
of literals, each of which is either a variable or the negation of a variable. 3-CNF is the subset
of CNF where each clause consists of at most three literals. 3-SAT = 3-CNF NSAT, the set of
satifiable CNF expressions where each clause has at most three literals.

Linear Time Reduction

We use Theorem 2 to show that 3-SAT is also N'P—complete, by giving a polynomial time (actually
linear time) reduction R of SAT to 3-SAT.

Our reduction algorithm uses the method pioneered by Tseytin in 1966, who gave a linear time
reduction of the Boolean circuit problem to 3-SAT.

Let £ € BOOL. The variables of E we call primary variables. For clarity, we require each primary
variable to be of the form of the form x /N, where N is a positive numeral, i.e., 1, 22, etc.. Let T
be a parse tree for E. Each subtree of T corresponds to a subexpression of F, and each internal
node of T' contains a distinct secondary variable, written as yN, where N is a positive numeral.
Each leaf is a primary variable.

Subtree Equations. For each non-leaf subtree of T gives rise to an equation setting the root
variable of the subtree equal to the concatenation of its children. Let Q(FE) be the conjunction
of the root of T" and all its subtree equations. Q(E) and FE are equisatisfiable. Finally, we obtain
R(E) by replacing each subtree equation in Q(F) by an equivalent 3-CNF expression, as given in
Table 2 below. R(E) and E are then equisatisfiable, and we are done.

subtree equation | equivalent 3-CNF expression

g=a (¢t!a) * (lg + a)

g=la (¢ +a) * (lg+!a)

g=a+b (q+‘a) (lg+a+b)=*(g+h)

g=ax*b (g + a) * (g+!a+'b) * (1g + b)

q=(a=10) (¢ +a) * (lg+'a + b) = (¢+b)

qg=(a=0) (¢+ a+b)* (g+la+!d) = (Ig + a+!b) * (lg+!a + b)
= (a #) (g + a+'b) * (g+!a + b) * (lg + a + b) * (Ig+!a+!b)

Table 2: Mapping subtree equations to 3-CNF expressions.

Example

Let E =!(z1 + 22 = 23)+!23 # x1 * 22. The parse tree of E is shown in Figure 1. Then Q(F) is
the conjunction of y1 and all subtree equations of 7"

ylx(yl = (y2 # y3))*(y2 = y4+y5)*(y3 = zlxx2)*(y4 =y6)*(y5 =123)*(y6 = (y7 = 23))*(y7 = z1+22)



/|\

x1

/\ /\
/|\

=> x3

\

x1 + x2
Figure 1: Parse tree T of !(zl1 + 22 = x3)+!x3 #
xl * x2
yl = (y2 #y3) | (y1 + y2+'1y3) * (y1+1y2 4+ y3) = (lyl + y2 + y3) = (lyl+ly2+'y3)
y2 = yd + y5 (y2+!yd) « (ly2 + y4 + y5) * (y2+'y5)
y3 =xl*x a2 (ly3 + 21) * (y3+'zl+!22) * (ly3 + 22)
y4 =y6 (y4 + y6) = (ly4+!y6)
yb =x3 (y5 + x3) * (ly5+'123)
y6 = (y7 = x3) | (y6 +y7) * (ly6+!y7 + x3) * (y6+!23)
Y7 =xl+ 22 (y7+lal) « (ly7 4+ 21 + 22) = (y7+!22)

Table 3: Mapping each subtree equation of T" to a 3-CNF expression
Finally, R(E) is the conjunction of (y1) and the right sides of Table 3.

R(E) = (y1) *

(y1 + y2+1y3) * (y1+'y2 + y3) * (lyl + y2 + y3) * (lyl+!y2+!y3) *
(y2+!yd) = (ly2 + y4 + y5) = (y2+!yb) *

(ly3 4+ x1) * (y3+1zl+122) * (ly3 + 22) * (y4 + y6) * (lyd+!y6) =
(yb + x3) * (lyb+!x3) =

(y6 + x7) * (ly6+!x7 4+ x3) * (y6+123) *

(y7+'1zl) * (ly7 + 21 4+ 22) = (y7+!22)

Exercise 1: Let £ =!((x1 + 22) = x3) * 3. Using the Tseytin Transformation method given
above, construct a 3-CNF expression equisatisfiable with F.



