Reduction of IND to Subset_Sum

We define an instance of IND, the independent set problem, to be a string of the form $\langle G \rangle \langle k \rangle$ where G is a graph and k a positive integer. That string is a member of the language IND if there is an independent set I of vertices of G of cardinality k, that is, no two members of I form an edge of G.

We define an instance of Subset_Sum, the subset sum problem to be a string $\langle X \rangle \langle K \rangle$ where X is a list of positive integers and K is an integer. A solution to that instance is a sublist of X whose total is K. We have already given a \mathcal{P} -TIME reduction of 3-SAT to IND, and a \mathcal{P} -TIME reduction of SAT to 3-SAT. By the Cook-Levin theorem, SAT is \mathcal{NP} -complete, and therefore IND is \mathcal{NP} -complete. We prove that Subset_Sum is \mathcal{NP} , using the certificate method. The sublist whose total equals K is the certificate, which can be (trivially) verified in polynomial time. We define a \mathcal{P} -TIME reduction R of IND to Subset_Sum, proving that Subset_Sum is \mathcal{NP} -complete.

Definition and Verification of the Reduction. Let $\langle G \rangle \langle k \rangle$ be an instance of IND, where G = (V, E). Write $V = \{v_0, v_1, v_2, \dots, v_{n-1}\}$, the vertices of G, and $E = \{e_0, e_1, e_2, \dots, e_m\}$, the edges of G. We say e_j meets v_i , and write $e_j \perp v_i$, if v_i is one of the two end points of e_j .

In our proof, we write all integers in base $B = \max(4, n + 1)$. This will prevent "carrys" when we add weights. We define *weights* of each vertex and each edge: $W(v_i) = B^m + \sum_{e_j \perp v_i} B^j$, and $W(e_j) = B^j$.

Let $X = W(v_0), \ldots W(v_{n-1}), W(e_0), \ldots W(e_{m-1}))$, the list of weights of the vertices and the edges of G. Then $\sum X = nB^m + 3\sum_{j=0}^{m-1} B^j$, and no carrys will be needed. Let $K = kB^m + \sum_{j=0}^{m-1} B^j$. We define $R(\langle G \rangle \langle k \rangle) = \langle X \rangle \langle K \rangle$, an instance of the subset sum problem.

Theorem 1 G has an independent set of cardinality k if and only if X has a sublist whose sum is K.

Proof: Suppose I is an independent set of k vertices of G. Let J be the set of all edges which do not meet any member of I, and let $W = \sum_{v \in I} W(v) + \sum_{e \in J} W(e)$.

Claim: W = K. Since |I| = k, the weights of vertices contribute k to the m^{th} digit of W (numbering digits from right to left), while the weights of edges contribute nothing to that digit. Thus, the m^{th} digits of W and K agree. For $0 \leq j < n$, The j^{th} digit of K is 1. If $e_j \in J$, then it contributes 1 to the j^{th} digit of W, and vertices contributed nothing. On the other hand, if e_j meets a member of I, say v_i , it is not a member of J, hence contributeds nothing to the j^{th} digit of W, while v_i contributes 1. Since I is independent, the vertex at the other end of e_j also contributes nothing to that digit. This proves the claim, hence $\langle X \rangle \langle K \rangle$ has a solution if $\langle G \rangle k$ has a solution.

Conversely, Suppose that some sublist of X has total K. Since there are no carrys, and the m^{th} digit of W is k, W must be the sum of exactly k weights of vertices, plus perhaps some weights of edges. Let I be the set of those vertices. We claim that I is independent, since otherwise two of them would have an edge e_j in common, making the the j^{th} digit of W at least 2, contradiction.

Example

Let G be the graph illustrated below, where n = 6 and m = 8. Let k = 3. The set $I = \{v_1, v_3, v_6\}$ is an independent set of vertices of G of size k. In our reduction, $J = \{e_4, e_7\}$. We write K and all the weights in base B = 7. The first array shows the weights of all items, while the second array shows that the weights of the selected items sum to K.

											$e_0 e_1$	
		B^8	B^7	B^6	B^5	B^4	B^3	B^2	B^1	B^0	e e v2	
y_0	=	1	0	0	1	0	0	1	0	1	\mathbf{v}_{0} \mathbf{e}_{2} \mathbf{e}_{4}	
y_1	=	1	0	0	0	0	1	0	1	1		
y_2	=	1	0	0	0	1	0	0	1	0		
y_3	=	1	0	1	0	1	1	1	0	0	e ₇	
y_4	=	1	1	1	1	0	0	0	0	0	V V	
y_5	=	1	1	0	0	0	0	0	0	0	4 5	
z_0	=	0	0	0	0	0	0	0	0	1		
z_1	=	0	0	0	0	0	0	0	1	0		
z_2	=	0	0	0	0	0	0	1	0	0	$B^8 \ B^7 \ B^6 \ B^5 \ B^4 \ B^3 \ B^2 \ B^1 \ B^4$	30
z_3	=	0	0	0	0	0	1	0	0	0	$y_0 = 1 0 0 1 0 0 1 0$	1
z_4	=	0	0	0	0	1	0	0	0	0	$y_2 = 1 0 0 0 1 0 0 1$	0
z_5	=	0	0	0	1	0	0	0	0	0	$y_5 = 1 1 0 0 0 0 0 0$	0
z_6	=	0	0	1	0	0	0	0	0	0	$z_3 = 0 0 0 0 0 1 0 0$	0
z_7	=	0	1	0	0	0	0	0	0	0	$z_6 = 0 0 1 0 0 0 0 0$	0
$\sum W$	=	6	3	3	3	3	3	3	3	3	K = 3 1 1 1 1 1 1 1	1

Exercise 1: Let G be the graph shown here. Then $\langle G \rangle \langle 4 \rangle$ is an instance of IND. Compute $R(\langle G \rangle \langle 4 \rangle)$, an instance of Subset_Sum. Is there are solution?

Pseudopolynomial Algorithm for Subset Sum

We define an instance of Subset_Sum, the subset sum problem to be a string $\langle X \rangle \langle K \rangle$ where $X = x_1, x_2, \ldots x_n$ is a list of positive integers and K is an integer. A solution to that instance is a subsequence of X whose total is K. Without loss of generality, $x_i \leq K$ for each i, since otherwise x_i could not be part of the solution.

We have already proved that Subset_Sum is \mathcal{NP} complete. We now give a dynamic programming algorithm \mathcal{A} of time complexity O(nK).

Definition of \mathcal{A} . Let A[n+1][K+1] be the Boolean matrix where A[i][k] means there is a subsequence of $x_1, \ldots x_i$ whose sum is k.

```
For k from 1 to K

A[0][k] = 0
A[0][0] = 1
For i from 1 to n

For k from 0 to K

A[i][k] = A[i-1][k]
If k \ge x_i and A[i][k - x_i]

A[i][k] = 1
Return A[n][K]
```

Exercise 2: Use the algorithm \mathcal{A} to decide whether there is a sublist of (6, 10, 7, 17, 3, 7, 10, 3, 4) whose sum is 25. (In a sequence, there can be duplicate terms.)

Exercise 3: Why can't we call \mathcal{A} "polynomial"?

Exercise 4: However, \mathcal{A} can be made \mathcal{P} -TIME, if the terms of the sequence are restricted to numbers with at most 2 digits. Explain.