
Reduction of IND to Subset Sum

We define an instance of IND, the independent set problem, to be a string of the form 〈G〉〈k〉
where G is a graph and k a positive integer. That string is a member of the language IND if there
is an indenpendent set I of vertices of G of cardinality k, that is, no two members of I form an
edge of G.

We define an instance of Subset Sum, the subset sum problem to be a string 〈X〉〈K〉 where X

is a list of positive integers and K is an integer. A solution to that instance is a sublist of X
whose total is K. We have already given a P–time reduction of 3-SAT to IND, and a P–time
reduction of SAT to 3-SAT. By the Cook-Levin theorem, SAT is NP-complete, and therefore IND
is NP–complete. We prove that Subset Sum is NP, using the certificate method. The sublist
whose total equals K is the certificate, which can be (trivially) verified in polynomial time. We
define a P-time reduction R of IND to Subset Sum, proving that Subset Sum is NP–complete.

Definition and Verification of the Reduction. Let 〈G〉〈k〉 be an instance of IND, where
G = (V,E). Write V = {v0, v1, v2, . . . vn−1}, the vertices of G, and E = {e0, e1, e2, . . . em}, the
edges of G. We say ej meets vi, and write ej⊥vi, if vi is one of the two end points of ej.

In our proof, we write all integers in base B = max (4, n+ 1). This will prevent “carrys” when
we add weights. We define weights of each vertex and each edge: W (vi) = Bm +

∑
ej⊥vi

Bj , and

W (ej) = Bj .

Let X = W (v0), . . .W (vn−1),W (e0), . . .W (em−1)), the list of weights of the vertices and the edges
of G. Then

∑
X = nBm +3

∑m−1

j=0
Bj , and no carrys will be needed. Let K = kBm +

∑m−1

j=0
Bj .

We define R(〈G〉〈k〉) = 〈X〉〈K〉, an instance of the subset sum problem.

Theorem 1 G has an independent set of cardinality k if and only if X has a sublist whose sum

is K.

Proof: Suppose I is an independent set of k vertices of G. Let J be the set of all edges which do
not meet any member of I, and let W =

∑
v∈I W (v) +

∑
e∈J W (e).

Claim: W = K. Since |I| = k, the weights of vertices contribute k to the mth digit of W
(numbering digits from right to left), while the weights of edges contribute nothing to that digit.
Thus, the mth digits of W and K agree. For 0 ≤ j < n, The jth digit of K is 1. If ej ∈ J , then
it contributes 1 to the jth digit of W , and vertices contributed nothing. On the other hand, if
ej meets a member of I, say vi, it is not a member of J , hence contributeds nothing to the jth

digit of W , while vi contributes 1. Since I is independent, the vertex at the other end of ej also
contributes nothing to that digit. This proves the claim, hence 〈X〉〈K〉 has a solution if 〈G〉k has
a solution.

Conversely, Suppose that some sublist of X has total K. Since there are no carrys, and the mth

digit of W is k, W must be the sum of exactly k weights of vertices, plus perhaps some weights of
edges. Let I be the set of those vertices. We claim that I is independent, since otherwise two of
them would have an edge ej in common, making the the jth digit of W at least 2, contradiction.
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Example

Let G be the graph illustrated below, where n = 6 and m = 8. Let k = 3. The set I = {v1, v3, v6}
is an independent set of vertices of G of size k. In our reduction, J = {e4, e7}. We write K and
all the weights in base B = 7. The first array shows the weights of all items, while the second
array shows that the weights of the selected items sum to K.

B8 B7 B6 B5 B4 B3 B2 B1 B0

y0 = 1 0 0 1 0 0 1 0 1
y1 = 1 0 0 0 0 1 0 1 1
y2 = 1 0 0 0 1 0 0 1 0
y3 = 1 0 1 0 1 1 1 0 0
y4 = 1 1 1 1 0 0 0 0 0
y5 = 1 1 0 0 0 0 0 0 0
z0 = 0 0 0 0 0 0 0 0 1
z1 = 0 0 0 0 0 0 0 1 0
z2 = 0 0 0 0 0 0 1 0 0
z3 = 0 0 0 0 0 1 0 0 0
z4 = 0 0 0 0 1 0 0 0 0
z5 = 0 0 0 1 0 0 0 0 0
z6 = 0 0 1 0 0 0 0 0 0
z7 = 0 1 0 0 0 0 0 0 0

∑
W = 6 3 3 3 3 3 3 3 3
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B8 B7 B6 B5 B4 B3 B2 B1 B0

y0 = 1 0 0 1 0 0 1 0 1
y2 = 1 0 0 0 1 0 0 1 0
y5 = 1 1 0 0 0 0 0 0 0
z3 = 0 0 0 0 0 1 0 0 0
z6 = 0 0 1 0 0 0 0 0 0

K = 3 1 1 1 1 1 1 1 1

Exercise 1: Let G be the graph shown here. Then 〈G〉〈4〉 is an instance of IND. Compute
R(〈G〉〈4〉), an instance of Subset Sum. Is there are solution?
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Pseudopolynomial Algorithm for Subset Sum

We define an instance of Subset Sum, the subset sum problem to be a string 〈X〉〈K〉 where
X = x1, x2, . . . xn. is a list of positive integers and K is an integer. A solution to that instance
is a subsequence of X whose total is K. Without loss of generality, xi ≤ K for each i, since
otherwise xi could not be part of the solution.

We have already proved that Subset Sum is NP complete. We now give a dynamic programming
algorithm A of time complexity O(nK).

Definition of A. Let A[n + 1][K + 1] be the Boolean matrix where A[i][k] means there is a
subsequence of x1, . . . xi whose sum is k.

For k from 1 to K

A[0][k] = 0
A[0][0] = 1
For i from 1 to n

For k from 0 to K

A[i][k] = A[i-1][k]
If k ≥ xi and A[i][k − xi]

A[i][k] = 1
Return A[n][K]

Exercise 2: Use the algorithm A to decide whether there is a sublist of (6, 10, 7, 17, 3, 7, 10,
3, 4) whose sum is 25. (In a sequence, there can be duplicate terms.)

Exercise 3: Why can’t we call A “polynomial”?

Exercise 4: However, A can be made P–time, if the terms of the sequence are restricted to
numbers with at most 2 digits. Explain.
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