
LALR Parsing Handout 1

Some, but not all, context-free languages can be parsed with an LALR parser. The input of the
parser is a string in the language, while the output is an abbreviated (meaning a sequence of
production labels). reverse rightmost derivation of the input.

Here is a context-free grammar G for a “toy” algebraic language, whose start symbol is E (for
expression), followed by the Action and Goto tables for an LALR parser for G. The productions
of G are labeled 1–3. in this example.

1. E → E + E

2. E → E ∗ E

3. E → a

The symbol a represents any variable.

The parser has a stack, which, at any step, contains bottom of stack symbol, $, and grammar
symbols. Each of those symbols has an associated stack state which we write as a subscript. In
our LALR parser of G, the stack states are 0. . . 6. The state 0 is reserved for the bottom of stack
symbol.

We annotate the right hand sides of each production with stack states:
1. E → E1,3,5 +2 E3

2. E → E1,3,5 ∗4 E5

3. E → a6

When you take the compiler class, you will learn an algorithm for computing these stack states.

The LALR parser contains three parts: the stack which grows and shrinks, the input file from
which symbols are read one at a time, and the output file. We use $ for both bottom of stack and
end of file. We assume 1-lookahead, i.e., the parser can peek at the next input symbol without
reading it. The parser can also peek at the top stack state without popping it.

Steps of the LALR Parser. The LALR parser operates in steps. At each step the parser
peeks at the top stack state and the next input symbol, which may be either a terminal of the
language or the end of file symbol, then follows the instructions given by the Action and Goto
tables, as shown below.

action goto

a + ∗ $ E

0 s6 1

1 s2 s4 halt

2 s6 3

3 r1 s4 r1

4 s6 5

5 r2 r2 r2

6 r3 r3 r3

1



The headers of rows of both the Action and Goto tables are the stack states. numbers 0 to 6 in
this case. The headers of the columns of the Action table are the possible input symbols, including
the end-of-file symbol $. The headers of the columns of the Goto tables are the variables of the
gammar. in this example, there is only one variable, the start symbol E. The stack state 0 is
used only on top of the bottom-of-stack symbol, $. Here is the sequence of steps.

1. Peek at the top stack state and the next input symbol (the lookahead), and read the action
in at that in that row and column. A blank entry in that table means that that combination
of stack state and input symbols will never occur if the input string is a generated by G.

2. Execute that action. There are three kinds of actions, halt, shift, and reduce.

(a) halt means that the parser if finished. The input file will consist of the end-of-file
symbol, and the stack will consist of the bottom-of-stack symbol with stack state 0,
followed by the start symbol with stack state 1. That is, in our example, the stack is
$0E1. The output file will be the string of productions of the rightmost derivation of
the input, written in reverse order.

(b) The action shift , written as sN where N is a stack state, means to “shift” the lookahead
symbol to the stack, that is, read the lookahead and then push it followed by the stack
state N .

(c) The action reduce is the reverse of a production of the grammar, written rK, where K
is the label of a production. At this time, the top several symbols of the stack should
match the right hand side of production K. That string of symbols is called a handle.
The handle is entirely popped, and the left hand side of production K, a variable, say
V , is pushed, followed by a stack state as determined by the Goto table. The label
K is then appended to the output file. The new stack state, pushed onto V is the
entry under the column header V in the Goto table, and in the row for the stack state
before we push V , but after we pop the handle.

Here is an example of the reduce action. Suppose the stack is $E1 +2 E3 ∗4 E5 and the lookahead
symbol is “+”. The Action table tells us to execute Action r2. Production 2 is E → E ∗ E, and
the handle E3 ∗4 E5 is popped, exposing stack state 2. The left hand side of the production is E
which is pushed, followed by the stack state 3, which is the entry of the Goto table in column E

and row 2. The new stack is $E1 +2 E3, and the production number 2 is appended to the output
file. The lookahead symbol is not read, hance remains “+”. At any given step, the stack, the
remaining input, and the output constitute the id (instantaneous description) of the parser.

Example Computations. We show the computation of our LALR for two input strings. For
the first example, let the input string be a ∗ a+ a. The rightmost derivation of that string is:

E
1
⇒ E + E

3
⇒ E + a

2
⇒ E ∗ E + a

3
⇒ E ∗ a+ a

3
⇒ a ∗ a+ a

The output is 33231, the abbreviated1 rightmost derivation of the input, written in reverse order.

The sequence of instantaneous desciptions of the LALR parser is shown below, where the stack,
bottom to top, is shown in the first column. The remaining output is shown in the second column,

1Just the production labels.

2



and the current output string in the third. The fourth column shows the action taken at each
step.

$0 a ∗ a+ a$

$0a6 ∗a+ a$ s6

$0E1 ∗a+ a$ 3 r3

$0E1∗4 a+ a$ 3 s4

$0E1 ∗4 a6 +a$ 3 s6

$0E1 ∗4 E5 +a$ 33 r3

$0E1 +a$ 332 r2

$0E1+2 a$ 332 s2

$0E1 +2 a6 $ 332 s6

$0E1 +2 E3 $ 3323 r3

$0E1 $ 33231 r1

halt

For our second example, let the input string be w = a+ a ∗ a ∗ a+ a. The output is 333232131,
the reverse rightmost derivation of the input. The computation of the LALR parser consists of
the id sequence:

$0 a+ a ∗ a ∗ a+ a$

$0a6 +a ∗ a ∗ a+ a$ s6

$0E1 +a ∗ a ∗ a+ a$ 3 r3

$0E1+2 a ∗ a ∗ a+ a$ 3 s2

$0E1 +2 a6 ∗a ∗ a+ a$ 3 s6

$0E1 +2 E3 ∗a ∗ a+ a$ 33 r3

$0E1 +2 E3∗4 a ∗ a+ a$ 33 s4

$0E1 +2 E3 ∗4 a6 ∗a+ a$ 33 s6

$0E1 +2 E3 ∗4 E5 ∗a+ a$ 333 r3

$0E1 +2 E3 ∗a+ a$ 3332 r2

$0E1 +2 E3∗4 a+ a$ 3332 s4

$0E1 +2 E3 ∗4 a6 +a$ 3332 s6

$0E1 +2 E3 ∗4 E5 +a$ 33323 r3

$0E1 +2 E3 +a$ 333232 r2

$0E1 +a$ 3332321 r1

$0E1+2 a$ 3332321 s2

$0E1 +2 a6 $ 3332321 s6

$0E1 +2 E3 $ 33323213 r3

$0E1 $ 333232131 r1

halt

1. Sketch the parse tree.

2. The grammar is ambigous, but the parser resolves ambiguities, computing a unique derivation
for any string in the language. Left associativity of addition is guaranteed by the entry r1 in row 3,
in the column headed by the “+”. Which entry of the action table guarantees that multiplication
is left associative?

3



3. Which two entries in the action table cause multiplication to have precedence over addition?

4. Write the computation of the parser if the input is a + a + a ∗ a. Use the same array format
used for our two examples above.

$0 a+ a+ a ∗ a$

$0E1 $ 3313321 r1

halt

An Unambiguous Grammar

The grammar G is ambiguous; if an expression contains more than one operator, it has multiple
parse trees. Instead of making the correct choices in the Action table, we can use an unambiguous
grammar, such as G2 given below. The grammar G2 below generates the same language as G.
We use The three variables: E (expression), T (term) and F (factor). Here is G2:

1. E → E +2 T3

2. E → T4

3. T → T ∗5 F6

4. T → F7

5. F → a8

Here are the rightmost derivations of a+ a+ a, a ∗ a ∗ a, and a+ a ∗ a using G2.

E
1
⇒ E+T

4
⇒ E+F

5
⇒ E+a

2
⇒ E+T+a

4
⇒ E+F+a

2
⇒ E+a+a

4
⇒ T+a+a

1
⇒ F+a+a

5
⇒ a+a+a

E
2
⇒ T

3
⇒ T ∗ F

5
⇒ T ∗ a

3
⇒ T ∗ F ∗ a

5
⇒ T ∗ a ∗ a

4
⇒ F ∗ a ∗ a

5
⇒ a ∗ a ∗ a

E
1
⇒ E+T

3
⇒ E+T ∗F

3
⇒ E+T ∗a

3
⇒ E+F ∗a

3
⇒ E+a∗a

3
⇒ T +a∗a

3
⇒ F +a∗a

3
⇒ a+a∗a

4



5. Write the G2 rightmost derivation of a ∗ a+ a.

6. Fill in the Action and Goto tables for an LALR parser for G2.

action goto

a + ∗ $ E T F

0

1 halt

2

3

4

5

6

7

8

Dangling Else

When there is a “else” after two ”if”s, which ”if” does the ”else” pair with? Here is CF grammar,
G3, which isolates this problem. The start symbol S is the only variable. The symbol i represents
“if(condition)”, e represents “else,” w represents “while(condition)” and a represents any other
statement, such as an assignment statement.

I have annotated the grammar with stack states.

1. S → i2S3

2. S → i2S3e4S5

3. S → w6S7

4. S → a8

7. Fill in the Action and Goto tables for an LALR parser for G3.

action goto

a i e w $ S

0

1 halt

2

3

4

5

6

7

8

5



8. Which entry, or entries, solve the dangling else problem?

9. Walk through the actions of the LALR parser for the input string iiwaea.

$0 iiwaea$

$0S1 $ 43421 r1

halt

The output is the reverse rightmost derivation 43421.

6


