
LALR Parsing Handout 2 Answers

We use “$” as both the bottom of stack symbol and the end of file symbol. The instantaneous description, id,

is a string consisting of the stack, from bottom to top, followed by the current (remaining) input file starting

with the next symbol, followed by the current output file. The symbols in the stack above the bottom are

alternating stack states and grammar symbols, where the stack states are written as subscripts for clarity. The

last symbol in the input file will be $.

In all of the LALR parsers given below, there will be two special stack states, 0, the state of the empty

stack, and 1, the state when the start symbol is just above the bottom. The stack is initially $0, and the last

configuration of the stack is always $0S1, where S is the start symbol. We give several examples of simple

LALR parsers. When we write a grammar, we include stack states as subcripts.

Example 1: Dangling else

The following LALR parser demonstrates how the “dangling else” can be resolved. Let L be the language

generated by the ambiguous CF grammar below, with start symbol S.

1. S → a2

2. S → w3S4

3. S → i5S6

4. S → i5S6e7S8

Here are the ACTION and GOTO tables.

a w i e $ S

0 s2 s3 s5 1

1 halt

2 r1 r1

3 s2 s3 s5 4

4 r2 r2

5 s2 s3 s5 6

6 s7 r3

7 s2 s3 s5 8

8 r4 r4

Problem 1. Which entry of the ACTION table resolves the dangling else problem?

Row 6, column “e” is s7, instead of r3.

We now show the action of our parser on the input string iiwaea.

1

$0 iiwaea$

$0i5 iwaea$ s5

$0i5i5 waea$ s5

$0i5i5w3 aea$ s3

$0i5i5w3a2 ea$ s2

$0i5i5w3S4 ea$ 1 r1

$0i5i5S6 ea$ 12 r2

$0i5i5S6e7 a$ 12 s7

$0i5i5S6e7a2 $ 12 s2

$0i5i5S6e7S8 $ 121 r1

$0i5S6 $ 1214 r4

$0S1 $ 12143 r3

halt

Example 2: Allowing a List of Statements

The body of a while statement, or the scope of an if-condition or else could be a statement, but it could also

be a list of statements enclosed in delimiters, such as braces, such as given in the following grammar.

1. S → a2

2. S → w3S4

3. S → i5S6

4. S → i5S6e7S8

5. S → {9L10}11

6. L → L10S12

7. L → λ

a w i e { } $ S L

0 s2 s3 s5 s9 1

1 halt

2 r1 r1 r1

3 s2 s3 s5 s9 4

4 r2 r2 r2

5 s2 s3 s5 s9 6

6 r3 r3 r3

7 s2 s3 s5 s9 8

8 r4 r4 r4

9 r7 r7 r7 r7 r7 10

10 s2 s3 s5 s9 s11 12

11 r5 r5 r5

12 r6 r6 r6 r6 r6

Problem 2. There were errors in the handout, which I corrected.

2

The rest of our examples are based on algebra. We use x to represent any identifier.

Example 3: Left Associativity of an Operator

The following grammar generates an algebraic language with one operator, subtraction, and one variable, x.

We use E (for expression) as the start symbol. Subtraction is left-associative.

1. E → x2

2. E → E −3 E4

Here are the ACTION and GOTO tables.

x − $ E

0 s2 1

1 s3 halt

2 r1 r1

3 s2 4

4 r2 r2

Problem 3. Which entry of the ACTION table guarantees that subtraction is left-associative?

r1 in row 2, column “−”

Example 4: Binary and Unary Minus Sign

In computer languages, −− 4 means 4, although your algebra teacher would not like it. How does an LALR

parser distinguish between the two operators, and enforce the priority of the unary operator?

1. E → x2

2. E → E −3 E4

3. E → −5E6

Problem 4. Write the steps of the parser with the input string x−−x.

ACTION GOTO

x − $ E

0 s2 s5 1

1 s3 halt

2 r1 r1

3 s2 s5 4

4 r2 r2

5 s2 s5 6

6 r3 r3

$0 x−−x

$0x2 −− x s2

$0E1 −− x 1 r1

$0E1−3 −x 1 s3

$0E1 −3 −5 x 1 s5

$0E1 −3 −5x2 1 s2

$0E1 −3 −5E6 11 r1

$0E1 −3 E4 113 r3

$0E1 1132 r2

halt

3

Example 5: Right Associativity of an Operator

Exponentiation is right associative. For example, 23
2

= 512, not 64. We’ll use “∧” for exponentiation. This

operator has higher precedence than multiplication, but lower than negation.

1. E → x2

2. E → E ∧3 E4

x ∧ $ E

0 s2 1

1 s3 halt

2 r1 r1

3 s2 4

4 s3 r2

Problem 5. Which entry of the ACTION table guarantees that exponentiation is right-associative?

s3 in row 4 column “∧”

Example 6: Precedence of Operators

Multiplication has precedence over subtraction. For example, 7 − 3 ∗ 2 is 1, not 8. Consider the language

generated by the CF grammar:

1. E → x2

2. E → E −3 E4

3. E → E ∗5 E6

x − ∗ $ E

0 s2 s3 1

1 s3 s5 halt

2 r1 r1 r1

3 s2 4

4 r2 s5 r2

5 s2 6

6 r3 r3 r3

Problem 6. Which two entries guarantee that multiplication has precedence over subtraction?

s5 in row 4 and r3 in row 6, column “−”

4

Example 7: Parentheses

1. E → x2

2. E → E −3 E4

3. E → (5E6)7

x − () $ E

0 s2 s5 1

1 s3 halt

2 r1 r1 r1

3 s2 s5 4

4 r2 r2 r2

5 s2 s5 6

6 s3 s7

7 r3 r3 r3

Unlike the previous examples, this grammar is unambiguous, so there is no ambiguity to resolve

Example 8: Combining Examples 3, 4, 5, 6, and 7.

Problem 7. Design an LALR parser for a grammar which has all of the above operators, and which allows

parentheses. The operators are addition, subtraction, multiplication, exponentiation, and negation. Negation

has the highest precedence, followed by exponentiation, followed by multiplication. Addition and subtraction

are of equal and lowest precedence. Addition, subtraction, and multiplication are left associative, while

exponentiation is right associative. For simplicity, let x represent any variable.

Here is the grammar with

annotated stack states.

1. E → E +2 E3

2. E → E −4 E5

3. E → E ∗6 E7

4. E → E ∧8 E9

5. E → −10E11

6. E → (12E13)14

7. E → x15

x + − ∗ ∧ () $ E

0 s15 s10 s12 1

1 s2 s4 s6 s8 halt

2 s15 s10 s12 3

3 r1 r1 s6 s8 r1 r1

4 s15 s10 s12 5

5 r2 r2 s6 s8 r2 r2

6 s15 s10 s12 7

7 r3 r3 r3 s8 r3 r3

8 s15 s10 s12 9

9 r4 r4 r4 s8 r4 r4

10 s15 s10 s12 11

11 r5 r5 r5 r5 r5 r5

12 s15 s10 s12 13

13 s2 s4 s6 s8 s14

14 r6 r6 r6 r6 r6 r6

15 r7 r7 r7 r7 r7 r7

5

