
Push Down Automata and Deterministic Push Down Automata

A Word from the Instructor

I have noticed that the definition of a push-down automaton (PDA) differs from textbook to
textbook. I checked four sources recently, and they all differ. However, all sources give equivalent
definitions, that is, in each case the every context-free language is accepted by some PDA, and the
language accepted by any PDA is context-free. I was seeking the ”official” definition of a PDA,
and I conclude that there is no consensus among experts. The definition I like best is on the
Wikipedia page, which has a friendly informal explanation of a PDA, complete with explantory
figures, as well as rigorous definitions of the terms. For that reason, my definition of PDA is
essentially the same as the one on Wikipedia.

You should read the Wikipedia article https://en.wikipedia.org/wiki/Pushdown_automaton
at least down to the end of the section called PDA and context-free languages. I have posted
the first five pages of that article as the handout wikipda.pdf. (Do not read past page 5.) Every
CFL is accepted by some PDA and the language accepted by any PDA is context-free. You also
need to know that 2-PDA (2 stacks) have Turing power.

We will emphasize deterministic push-down automata (DPDA). They have their own Wikipedia
article, https://en.wikipedia.org/wiki/Deterministic_pushdown_automaton. DPDA have
practical importance. For example, an LALR parser is a DPDA with output.

Definition of a PDA

A PDA is an ordered 7-tuple M = (Q,Σ,Γ, δ, q0, z, F ) where

• Q is a finite set of states

• Σ is the input alphabet

• Γ is the stack alphabet

• δ is the transition relation, sometimes called the transition function, which is a a finite

subset of
[

Q× Σ ∪ {ε} × Γ
]

×
[

Q× Γ∗

]

.

• q0 ∈ Q is the start state.

• z ∈ Γ is the start stack symbol.

• F ⊆ Q is the set of final states.

Instantaneous Descriptions. We define an instantaneous description (ID) of M to be an
ordered triple (q, w, γ) where

• q ∈ Q, is the current state of M ,

• w ∈ Σ∗ is the unread input string,

• γ is the current stack.
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We write the input string from left to right and the stack from top to bottom. Thus, if w = ab,
the first symbol of w is a, while if γ = xyz, the top symbol is x and the bottom symbol is
z. The transition relation δ can be defined to be a finite set of ordered pairs. For clarity, we
insert an arrow between the first and second member of a pair. Thus we write a member of δ
as (q, a, x) 7→ (q′, γ), for q, q′ ∈ Q, a ∈ Σ ∪ {ε}, x ∈ Γ, and γ ∈ Γ∗. A start ID of M is a triple
(q0, w, z), where w ∈ Σ∗. The initial stack contains just the start stack symbol z.

The Wikipedia page gives two possibilities for an accepting ID, empty stack and final state. We
will use the stricter rule, empty stack and final state. In any case, the entire input file must have
been read. Thus an accepting ID is an ordered triple (q, ε, ε), where q ∈ F .

Transitions and Computations. Each step of a computation of M changes one ID of M

to another, guided by one member of δ. Suppose the current ID is I = (q, aw, xγ), for q ∈ Q,
a ∈ Σ∪ ε, w ∈ Σ∗, x ∈ Γ, and α ∈ Γ∗, and the step is guided by (q, a, x) 7→ (q′, α). Then M pops
the symbol x off the stack. Then either reads a symbol or not, then pushes α onto the stack. The
ID after the step is I ′ = (q′, w, αγ). We write I ⊢M I ′.

Language Accepted by M . We write ⊢∗

M
to be the reflective transitive closure of ⊢M . We say

M accepts w ∈ Σ∗ if (q0, w, z) ⊢
∗

M
(f, ε, ε) for some f ∈ F . Let L(M) be the language consisting

of all strings accepted by M .

Example 1. We define a PDA M which accepts L = {anbn : n ≥ 0}.

Let M =
(

{q0, q1, q2}, {a, b}, {z, a}, δ, q0, z, {q2}
)

where δ consists of the following transitions.
1. (q0, ε, z) 7→ (q2, ε)
2. (q0, a, z) 7→ (q0, az)
3. (q0, a, a) 7→ (q0, aa)
4. (q0, b, a) 7→ (q1, ε)
5. (q1, b, a) 7→ (q1, ε)
6. (q1, ε, z) 7→ (q2, ε)

We now give a computation of M which accepts the string aaabbb.

(q0, aaabbb, z)
2

⊢M (q0, aabbb, az)
3

⊢M (q0, abbb, aaz)
3

⊢M (q0, bbb, aaaz)
4

⊢M (q1, bb, aaz)
5

⊢M (q1, b, az)
5

⊢M

(q1, ε, z)
6

⊢M (q2, ε, ε)

Example 2. Palindromes.

Let L be the language of palindromes over {a, b}. That is, L = {w ∈ {a, b}∗ : wR = w}.

δ consists of the following transitions.
1. (q0, a, z) 7→ (q0, az)
2. (q0, b, z) 7→ (q0, bz)
3. (q0, a, a) 7→ (q0, aa)
4. (q0, b, a) 7→ (q0, ba)
5. (q0, a, b) 7→ (q0, ab)
6. (q0, b, b) 7→ (q0, bb)
7. (q0, ε, z) 7→ (q1, z)
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8. (q0, a, z) 7→ (q1, z)
9. (q0, b, z) 7→ (q1, z)
10. (q0, ε, a) 7→ (q1, a)
11. (q0, a, a) 7→ (q1, a)
12. (q0, b, a) 7→ (q1, a)
13. (q0, ε, b) 7→ (q1, b)
14. (q0, a, b) 7→ (q1, b)
15. (q0, b, b) 7→ (q1, b)
16. (q1, a, a) 7→ (q1, ε)
17. (q1, b, b) 7→ (q1, ε)
18. (q1, ε, z) 7→ (q2, ε)

Deterministic Push-Down Automata

In practice, it is impossible to write a program to emulate a machine that is not deterministic.
Here, we focus our attention on deterministic push-down automata, DPDA. Not every CFL is
accepted by a DPDA. If L is accepted by a DPDA, we say it is a deterministic context-free
language, or DCFL.

A PDA is may not query either the stack or the input string to determine whether it is empty.
Since a PDA is non-deterministic, it can always correctly guess whether the stack or the input is
empty. This solution is not availabel to a DPDA.

We solve the problem for the stack by insisting that there is always a special symbol at the bottom
of the stack, the start stack symbol, up until the last step, when it is popped off. Similarly, when
we design a DPDA, we can insist that every input string ends of an “end-of-file” marker, sometimes
abbreviated eof; we use the dollar sign “$” for end-of-file.

Definition of a Deterministic Push-Down Automaton

A DPDA is defined to be a PDA which has two restrictive properties:
1. The δ is single valued. That is, for any (q, a, x) ∈ Q× Σ ∪ {ε} × Γ) there is a most one value
of δ(q, a, x) ∈ Q× Γ∗.
2. If δ(q, ε, x) is defined for some q ∈ Q, x ∈ Γ, then δ(q, a, x) is not defined for any a ∈ Σ.

Observe that the PDA in Example 2 above is not a DPDA, since, for example, δ(q0, a, a) is
simultaneously (q0, aa) and (q2, a).

The justification for the second property is less obvious. A DPDA computes pop= x first, then
uses x to decide what to do next. If δ(q, ε, x) and δ(q, a, x) are both defined for some a ∈ Σ,
M does not know whether to read the next input symbol. A PDA, on the other hand, correctly
guesses what to do.

Finite Lookahead

We say that a DPDA has k-lookahead if it is able to look at the next k input symbols without
reading them. When we study LALR parsing, we will assume that the parser has 1-lookahead.
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