
Regular Languages are in Nick’s Class

We give an NC algorithm which decides the mambership problem for a regular language,
proving that the class of regular languages is a subclass of Nick’s Class.

Boolean Matrices

A Boolean matrix is a matrix whose entries are of Boolean type. We write 1 for true and
0 for false.

Boolean Matrix Operations Operations, such as addition and multipication, on Boolean
matrices are similar to operations on number matrices, except that disjunction and con-
junction replace addition and multiplication. That is, number matrix operations use (×,+)
algebra, while Boolean matrices use (and, or) algebra. For examle:




0 1 1
0 0 1
1 0 0



+





1 0 0
1 1 0
1 0 0



 =





1 1 1
1 1 1
1 0 0



 and





0 1 1
0 0 1
1 0 0









1 0 0
1 1 0
1 0 0



 =





1 1 0
1 0 0
1 0 0





Transition Matrices

Let L ⊆ Σ∗ be a regular language over Σ, and let M = (Σ, Q, F, q0, δ) be an NFA which
accepts L. Let Q = {qi : 0 ≤ i < k}. For any a ∈ Σ we define the transition matrix Ta to
be the k × k Boolean matrix where

Ta[i, j] =

{

1 if qj ∈ δ(a, qi)
0 otherwise

for all 0 ≤ i, j < k

We extend this definition by mapping concatenation to matrix multiplication, i.e., Tuv =
TuTv, and Tλ is the identity matrix.

Algorithnm A

A reads a string w ∈ Σ∗ and returns 1 if and only if w ∈ L. Let n = |w|. We first assume
n = 2m. If n is not a power of 2, we pad w with empty strings to make its length a power
of 2. For example, if w = abccbcabbabcc, of length 13, we rewrite w as abccbcabbabccλλλ
of length 16, making m = 4. For any 0 ≤ p ≤ m, w is the concatenation of 2m−p substrings
of length 2p. Let S be the set of all substrings thus obtained. A is as follows:

1

Algorithm A
Compute Tλ, the identity matrix.
Compute the transition matrix Ta for all a ∈ Σ.
For all p from 1 to m
For all u ∈ S of length 2p

Let u = xy where |x| = |y| = 2p−1

Tu = TxTy

If (Tw[0, f] for some qf ∈ F) return 1. (w ∈ L)
Else return 0. (w /∈ L)

Since we are taking the sizes of Σ and Q to be O(1), all Ta for a ∈ Σ can be computed
in O(1) time by one processor. The remainder of the algorithm consists of n − 1 matrix
multiplications which can be done in O(log n) time with O(n) processors; A ∈ NC.

2

Example

Let Σ = {a, b, c} and L = L(M),
whereM is the followinhg NFA. Let
w = acacabba.

We compute transition matrices of
elementary strings, then copy to the
8 leaves of our computation tree.
Each matrix in rows 2–4 is the prod-
uct of the two above it. Then w ∈ L
since Tw[0, 3] = 1 and q3 ∈ F .

1

3

0

2a

b

a,b

a

b

c

c









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









Tλ









0 1 1 0
0 0 0 0
0 0 0 0
0 0 0 1









Ta









0 0 1 0
0 1 0 1
0 0 0 0
0 0 0 0









Tb









0 0 0 0
0 0 0 0
0 0 0 1
1 0 0 0









Tc







0 1 1 0
0 0 0 0
0 0 0 0
0 0 0 1













0 0 0 0
0 0 0 0
0 0 0 1
1 0 0 0













0 1 1 0
0 0 0 0
0 0 0 0
0 0 0 1













0 0 0 0
0 0 0 0
0 0 0 1
1 0 0 0













0 1 1 0
0 0 0 0
0 0 0 0
0 0 0 1













0 0 1 0
0 1 0 1
0 0 0 0
0 0 0 0













0 0 1 0
0 1 0 1
0 0 0 0
0 0 0 0













0 1 1 0
0 0 0 0
0 0 0 0
0 0 0 1







Ta Tc Ta Tc Ta Tb Tb Ta







0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0













0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0













0 1 0 1
0 0 0 0
0 0 0 0
0 0 0 0













0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0







Tac Tac Tab Tba







1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1













0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0







Tacac Tabba






0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0







Tacacabba = Tw

3

Exercise 1: Let M be the NFA
with transition matrix

a b
0 0, 1 ∅
1 ∅ 1, 2
2 0 0

Use the tournament method shown above to determin whether aabab ∈ L(M).

4

