True/False Questions

\$\mathcal{P}\$ means \$\mathcal{P}\$-TIME
\$\mathcal{N}\mathcal{P}\$-TIME
\$\mathcal{R}\mathcal{E}\$ means recursively enumerable
\$\mathcal{N}\mathcal{C}\$ means Nick's class.
If \$\mathcal{C}\$ is any class of languages, co-\$\mathcal{C}\$ means the class of all languages which are complements of languages in \$\mathcal{C}\$.
A binary language is a language over the binary alphabet {0,1}.
A recursive function is any function which can be computed by a machine.
A recursive real number is any real number whose \$n^{th}\$ decimal digit is a recursive function of \$n\$.
A fraction is a string consisting of a numeral, followed by a slash, followed by another numeral.

- 1. True or False. T = true, F = false, and O = open, meaning that the answer is not known science at this time. In the questions below, \mathcal{P} and \mathcal{NP} denote \mathcal{P} -TIME and \mathcal{NP} -TIME, respectively.
 - (i) **T** The problem of whether a given string is generated by a given context-free grammar is decidable.
 - (ii) **T** If G is a context-free grammar, the question of whether $L(G) = \emptyset$ is decidable.
 - (iii) **T** The Kleene closure of any \mathcal{NP} langauge is \mathcal{NP}
 - (iv) **T** The language $\{a^n b^n c^n d^n \mid n \ge 0\}$ is recursive.
 - (v) **T** The language $\{a^n b^n c^n \mid n \ge 0\}$ is in the class \mathcal{P} -TIME.
 - (vi) **O** There exists a polynomial time algorithm which finds the factors of any positive integer, where the input is given as a binary numeral.
 - (vii) **F** Every undecidable problem is \mathcal{NP} -complete.
 - (viii) **F** Every problem that can be mathematically defined has an algorithmic solution.
 - (ix) **F** The intersection of two undecidable languages is always undecidable.
 - (x) **T** Every \mathcal{NP} language is decidable.
 - (xi) **F** If L_1 and L_2 are \mathcal{NP} -complete languages and $L_1 \cap L_2$ is not empty, then $L_1 \cap L_2$ must be \mathcal{NP} -complete.
 - (xii) **O** There exists a \mathcal{P} -TIME algorithm which finds a maximum independent set in any graph G.
 - (xiii) **T** There exists a \mathcal{P} -TIME algorithm which finds a maximum independent set in any acyclic graph G.
 - (xiv) $\mathbf{O} \mathcal{NC} = \mathcal{P}$.
 - (xv) $\mathbf{O} \mathcal{P} = \mathcal{NP}$.
 - (xvi) $\mathbf{O} \ \mathcal{NP} = \mathcal{P}$ -space

- (xvii) **O** \mathcal{P} -space = EXP-time
- (xviii) \mathbf{O} EXP-TIME = EXP-SPACE
- (xix) **T** The traveling salesman problem (TSP) is known to be \mathcal{NP} -complete.
- (xx) **T** The language consisting of all satisfiable Boolean expressions is known to be \mathcal{NP} -complete.
- (xxi) **T** The Boolean Circuit Problem is in \mathcal{P} .
- (xxii) **O** The Boolean Circuit Problem is in \mathcal{NC} .
- (xxiii) **T** 2-SAT is \mathcal{P} -TIME.
- (xxiv) **O** 3-SAT is \mathcal{P} -TIME.
- (xxv) **T** Primality is \mathcal{P} -TIME.
- (xxvi) **F** There is a \mathcal{P} -TIME reduction of the halting problem to 3-SAT.
- (xxvii) **T** Every context-free language is in \mathcal{NC} .
- (xxviii) **T** Addition of binary numerals is in \mathcal{NC} .
- (xxix) \mathbf{F} Every language generated by a general grammar is recursive.
- (xxx) **F** The problem of whether two given context-free grammars generate the same language is decidable.
- (xxxi) **T** The language of all fractions (using base 10 numeration) whose values are less than π is decidable.
- (xxxii) **T** For any two languages L_1 and L_2 , if L_1 is undecidable and there is a recursive reduction of L_1 to L_2 , then L_2 must be undecidable.
- (xxxiii) **F** For any two languages L_1 and L_2 , if L_2 is undecidable and there is a recursive reduction of L_1 to L_2 , then L_1 must be undecidable.
- (xxxiv) **F** If P is a mathematical proposition that can be written using a string of length n, and P has a proof, then P must have a proof whose length is $O(2^{2^n})$.
- (xxxv) **T** If L is any \mathcal{NP} language, there must be a \mathcal{P} -TIME reduction of L to the partition problem.
- (xxxvi) **O** If L is \mathcal{NP} and also co- \mathcal{NP} , then L must be \mathcal{P} .
- (xxxvii) **T** A language is \mathcal{RE} if and only if it is generated by a grammar.
- (xxxviii) **T** If L is \mathcal{RE} and also co- \mathcal{RE} , then L must be decidable.
- (xxxix) **T** Every language is enumerable.
 - (xl) **F** If a language L is undecidable, then there can be no machine that enumerates L.
 - (xli) **F** There exists a mathematical proposition which is true, but can be neither proved nor disproved.
 - (xlii) **T** There is a non-recursive function which grows faster than any recursive function.

- (xliii) **T** There exists a machine that runs forever and outputs the string of decimal digits of π (the well-known ratio of the circumference of a circle to its diameter).
- (xliv) **F** For every real number x, there exists a machine that runs forever and outputs the string of decimal digits of x.
- (xlv) **T** Every subset of any enumerable set is enumerable.
- (xlvi) \mathbf{T} There is a polynomial time reduction of the subset sum problem to the binary numeral factorization problem.
- (xlvii) **F** For any real number x, the set of fractions whose values are less than x is \mathcal{RE} .
- (xlviii) **T** For any recursive real number x, the set of fractions whose values are less than x is recursive (i.e., decidable).
- (xlix) **T** The membership problem for any CFL is in the class \mathcal{P} -TIME.
 - (l) **F** 2-SAT is known to be \mathcal{NP} -complete.
 - (li) **T** The complement of any \mathcal{P} -TIME language is \mathcal{P} -TIME.
 - (lii) **T** The complement of any \mathcal{P} -space language is \mathcal{P} -space.
 - (liii) **T** The complement of any decidable language is decidable.
 - (liv) **F** The complement of any undecidable language is undecidable.
 - (lv) **F** The complement of any \mathcal{RE} language is \mathcal{RE} .

The *jigsaw puzzle problem* is, given a set of various polygons, and given a rectangular table, is it possible to assemble those polygons to exactly cover the table?

The *furniture mover's problem* is, given a room with a door, and given a set of objects outside the room, it is possible to move all the objects into the room through the door?

- (lvi) **T** The jigsaw puzzle problem is known to be \mathcal{NP} complete.
- (lvii) **F** The jigsaw puzzle problem is known to be \mathcal{P} -SPACE complete.
- (lviii) **F** The furniture mover's problem is known to be \mathcal{NP} complete.
- (lix) **T** The furniture mover's problem is known to be \mathcal{P} -space complete.
- (lx) **T** The complement of any recursive language is recursive.
- (lxi) **T** For any infinite countable sets A and B, there is a 1-1 correspondence between A and B.
- (lxii) **F** The set of all binary languages is countable.
- (lxiii) **T** A language L is recursively enumerable if and only if there is a machine which accepts L.
- (lxiv) **T** Every \mathcal{NP} language is reducible to the independent set problem in polynomial time.

- (lxv) **T** If a Boolean expression is satisfiable, there is a polynomial time proof that it is satisfiable.
- (lxvi) ${\bf T}$ The general sliding block problem is ${\cal P}\text{-}{\rm SPACE}$ complete.
- (lxvii) \mathbf{F} The halting problem is decidable.