CSC 456/656 Fall 2025 Study for Third Examination April 9, 2025

- 1. Review tflans.pdf, tf2ans.pdf and tf3ans.pdf.
- 2. Use the pumping lemma for regular languages to prove that $L = \{a^n b^n\}$ is not regular.
- 3. Use the pumping lemma for context-free languages to prove that $L = \{a^n b^n c^n\}$ is not context-free.
- 4. Prove that the complement of $\{a^n b^n c^n\}$ is context-free. (Hint: A CF grammar for that language has lots of productions.)
- 5. Prove that the set of recursive real numbers is countable.
- 6. Prove the theorems on the handout CanonEnum.pdf.
- 7. Review the proof that the halting problem is undecidable.
- 8. What is the Church-Turing thesis?
- 9. Give a definition of the class \mathcal{NC} .
- 10. Give a definition of the class \mathcal{P} -complete.
- 11. Name a language which is known to be \mathcal{P} -complete.
- 12. Give a definition of the class \mathcal{P} -SPACE-complete.
- 13. Name a language which is known to be \mathcal{P} -SPACE-complete.
- 14. Let L be the Dyck language, but where each left parenthesis is written as a and every right parenthesis as b. (This makes grading easier, since if you write parentheses carelessly, they look alike.)

Here is an unambiguous CFG for L.

1. $S \rightarrow a_2 S_3 b_4 S_5$

2. $S \rightarrow \lambda$

(a) Fill in the action and go o tables for the grammar given above. I have started the tables by writing row 0 and row 4.

(b) Show the computation of the parser for the input string *aabbab*.

	a	b	\$	S
0	s2		r2	1
1				
2				
3				
4	s2	r2	r2	5
5				

- 15. The following CF grammar models an assignment statement. We allow just two identifiers, x and y, and two operators + and *. We have three grammar variables, S for assignment statement, I for identifier, and E for expression. We have the equal sign as a symbol. The start symbol is S.
 - 1. $S \rightarrow I_2 =_3 E_4$ 2. $I \rightarrow x_5$ 3. $I \rightarrow y_6$ 4. $E \rightarrow I_7$ 5. $E \rightarrow E +_8 E_9$
 - 6. $E \to E *_{10} E_{11}$

	x	y	+	*	=	\$	S	Ι	E
0	s5	s6					1	2	
1						halt			
2					s3				
3	s5	s6						7	4
4			s8	s10		r1			
5			r2	r2	r2	r2			
6			r3	r3	r3	r3			
7			r4	r4	r4	r4			
8	s5	s6						7	9
9			r5	s10		r5			
10	s5	s6						7	11
11			r6	r6		r6			

(a) Sketch the parse tree of the string

$$x = y + x * y$$

(b) Identify the entries of the Action table which ensure that addition and multiplication are left associative and that multiplication has precedence over addition.

16. (a) Give a CNF grammar for the language L of problem 14.

17.

⁽b) Use that grammar and the CYK algorithm to prove that $aababb \in L$.