CS 456/656 Fall 2025 Answers to Second Examination March 12

The entire test is 275 points.

- 1. True or False (5 points each). T = true, F = false, and O = open, meaning that the answer is not known science at this time.
 - (i) **F** Every subset of a regular language is regular.
 - (ii) **O** There exists a polynomial time algorithm which finds the factors of any positive integer, where the input is given as a binary numeral.
 - (iii) **O** There exists a \mathcal{P} -TIME algorithm which finds a maximum independent set in any graph.
 - (iv) $\mathbf{O} \ \mathcal{NC} = \mathcal{P}.$
 - (v) $\mathbf{O} \mathcal{P} = \mathcal{NP}.$
 - (vi) **T** The language consisting of all satisfiable Boolean expressions is known to be \mathcal{NP} -complete.
 - (vii) **F** The context-free grammar equivalence problem is decidable.
 - (viii) **T** For any two languages L_1 and L_2 , if L_1 is \mathcal{NP} -complete and there is a recursive reduction of L_1 to L_2 , then L_2 must be \mathcal{NP} -hard.
 - (ix) **O** If L is \mathcal{NP} and also co- \mathcal{NP} , then L must be \mathcal{P} .
 - (x) **T** If L is \mathcal{RE} and also co- \mathcal{RE} , then L must be decidable.
 - (xi) \mathbf{T} There exists a mathematical proposition which is true, but can be neither proved nor disproved.
 - (xii) **F** For every real number x, there is a C++ program which runs forever, writing the string of decimal digits of x.
 - (xiii) **F** 2-SAT is known to be \mathcal{NP} -complete.
 - (xiv) **T** 3-SAT is known to be \mathcal{NP} -complete.
 - (xv) **T** The complement of any \mathcal{P} -TIME language is \mathcal{P} -TIME.
 - (xvi) **F** The complement of any undecidable language is undecidable.
 - (xvii) **T** A language L is recursively enumerable if and only if there is a machine which accepts L.
 - (xviii) **F** If $f(n) = \Theta(g(n))$ and g is a recursive (computable) function, then f must be recursive.

- 2. [5 points] Fill in the blank. A language *L* is **decidable** if and only if there is a machine which enumerates *L* in canonical order.
- 3. Which of these sets are countable? (5 points each) Write **T** for countable, **F** for uncountable, and **O** if the answer is not known.
 - ${\bf T}$ The set of rational numbers.
 - ${\bf F}$ The set of real numbers.
 - ${\bf T}$ The set of recursive functions from ${\cal N}$ to ${\cal N}.$
 - ${\bf T}$ The set of recursive real numbers.
 - **F** The set of undecidable binary languages.
 - T The set of recursively enumerable binary languages.
- 4. [10 points] State the Church Turing thesis.

If a computation can be done by any machine, that computation can be done by some Turing machine.

5. [10 points] State the pumping lemma for regular languages.

For any regular language LThere exists a number p such that For any string $w \in L$ of length at least pThere exist strings x, y, and z such that the following four statements hold: 1. w = xyz. 2. $|xy| \leq p$. 3. $|y| \geq 1$. 4. For any integer $i \geq 0$ $xy^i z \in L$.

6. [10 points] What is a recursive real number? Give a definition.

There is more than one definitions. Any one of them is accepted as the correct answer. Here are three we covered in class. Let x be a real number.

- (i) x is recursive if and only if there is a machine which runs forever, writing the digits of the decimal (or binary, or any other base) expansion of x.
- (ii) x is recursive if and only if there is a computable function f such that f(n) is the n^{th} decimal (or binary, or whatever) expansion of x.
- (iii) x is recursive if and only if the set of fractions whose values are less than x is a decidable language.

7. [10 points] What does " \mathcal{NP} -hard" meain?

Informally, it means "at least as hard as an \mathcal{NP} -complete roblem." More formally, a language H is said to be \mathcal{NP} -hard if every \mathcal{NP} language is \mathcal{P} -TIME reducible to H.

8. [10 points] Show that the context-free grammar given below is ambiguous by writing two different parse trees for the same string.

- 9. [10 points] Give an unambiguous context-free grammar for the language of all palindromes over $\{a, b\}$
 - $\begin{array}{l} S \rightarrow aSa \\ S \rightarrow bSb \\ S \rightarrow a \\ S \rightarrow b \\ S \rightarrow \lambda \end{array}$
- 10. [10 points] Name a very important practical consequence if it became known that $\mathcal{P} = \mathcal{NP}$.

That would imply there exist no 1-way functions. (A 1-way function is a function f so that f(n) is computable in polynomial time, but where, given f(n), it is impossible to compute n in polynomial time. Cryptography based on 1-way functions would then be breakable in polynomial time, In particular, RSA encryption, which is widely used, would be breakable in polynomial time.

11. [20 points] Prove that the halting problem is undecidable.

Suppose the halting problem is decidable. Let D be the following program:

```
Read a program P
If P halts with input P
Loop forever
Else
Halt
```

If D halts with input D, then D with input D loops forever, contradiction. If D does not halt with input D, then D with input D halts, contradiction. We conclude that there is no algorithm which solves the halting problem.

12. [20 points] Give a polynomial time reduction of the subset sum problem to Partition. An instance of the subset sum problem is a sequence of positive numbers $\sigma = x_1, x_2, \ldots, x_n$ together with a number K. A solution of that instance is a subsequence of σ whose terms total K. An instance of the partition problem is a sequence of numbers $\tau = y_1, y_2, \ldots, y_m$ and a solution to that instance is a partition of the terms of τ into two subsequences of equal total; alternatively stated, a subsequence of total half the total of the terms of τ .

Given instance σ, K of the subset sum problem, let S be the sum of the terms of σ . We map that instance to the sequence $\tau = x_1, x_2, \ldots x_n, K + 1, S - K + 1$. Then σ, K has a solution if and only if τ has a solution.

13. [20 points] Correctly state the verification definition of the class \mathcal{NP} .

A language L is \mathcal{NP} if and only if there exists a number k and a program V such that

1. For every string $w \in L$ there exists a string c such that V accepts (w, c) in polynomial time.

2. For any string $w \notin L$ and any string c, V does not accept (w, c).

14. [20 points] Sketch a PDA for the language L of all strings over $\{a, b\}$ which have equal numbers of each symbol.

On the examination, I did not specify that the PDA had to be deterministic. The left figure shows a PDA which is not deterministic, while the right figure shows a DPDA. In both cases, the machine accepts L.

