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1 Introduction

Welcome to Formal Languages and Automata, taught at UNLV as CS456/656. I expect every student to

know high school mathematics as well as the material of our prerequisite courses, including programming
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and discrete mathematics. Our textbook is Formal Languages and Automata, by Peter Linz.

2 Formal Languages

A language is a set of strings (also called words) of symbols over a given alphabet. Natural languages, such

as English, are not studied in this course; the problem is that every person speaks a different version, and

that a person’s version is constantly changing: you do not speak the same language that you did at age

five.

A simple example of a formal language that everyone knows is the set of decimal (base 10) numerals for

positive integers. A more complex example is any programming language, such as C++. From now on,

when we say “language” we mean “formal language.” Whenever We ask a class, on the first day, what a

language is, the word “communication” is inevitably mentioned. But that is not part of the definition. We

give the formal definition of a “language” below.

Symbols, Every kind of discussion must begin with undefined terms, such as the term “point” in plane

geometry. The word “symbol” is an undefined term. That does not imply that there’s no such thing as a

symbol: in fact, anything could be called a symbol.

Alphabets. An alphabet is a finite set of symbols. Here are some alphabets in common use.

1. The Roman alphabet, either lower or upper case, or both.

2. The alphabet of Arabic digits: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

3. The alphabet of all ASCII symbols.

4. The binary alphabet: {0, 1}.

5. The unary (caveman) alphabet: {1}. (Is it still in use today?)

Strings. A string is a finite sequence of symbols, such as abbaba or 1024. If w is a string, we write |w|

for the length of w. For example, |abbaba| = 6. The empty string is the string of length zero. We will use

the Greek letter λ to denote the empty string, but most textbooks use the Greek letter ǫ instead.

Languages Given an alphabet Σ, a language over Σ is a set of strings over Σ, i.e., a string of symbols

of Σ. A language can be finite or infinite. Here are some examples.

1. Σ∗, The set of all strings over a given alphabet Σ.

2. {λ}, the language consising of just one string, the empty string.

3. ∅, the empty set, which we also call the empty language.

4. The set of all decimal (base 10) numerals for positive integers.
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5. The set of all words used by Shakespeare.

6. The set of all palindromes over the alphabet {a, b}, such as a, aa, abba, abbababba.

7. C++, the set of all C++ programs.

2.1 Operations on Languages

A language is a set, and the standard operations on sets apply to languages as well. These include union

intersection, inclusion, and complementation. It is common to use the symbol ‘’+” to denote a union of

languages. In addition, we have the operations concatenation and Kleene closure.

If A and B are languages, the concatenation AB is the set of all strings consisting of the concatenation

of a member of A and a member of B. For example, if A = {a, ab} and B = {a, ba}, then AB =

{aa, aba, abba}. We write A2 for the concatenation AA. In our example, A2 = {aa, aba, abab} and A3 =

A2A. Concatenation is associative but not commutative. That is, for any languages A,B,C, (AB)C =

A(BC), but BA may not equal AB.

If L is any language, the Kleene closure of L, written L∗, is the set of all strings, which are concatentations

of any sequence of members of L. We also write L∗ = L0 + L1 + L2 + L3 + · · ·. For example, if L = {a},

L∗ = {λ, a, aa, aaa, . . .}. For any language L, the empty string is a member of L∗.

Exercises. Let A be any language over an alphabet Σ, and a, b ∈ Σ.

1. What is A+A?

2. What is {λ}A? (Concatenation)

3. What is {a, ab}{a, ba}?

4. What is ∅A?

5. What is {λ}∗?

6. What is ∅∗?

7. Is it true that {λ}+A = A?
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3 Languages and Machines

An abstract machine, or automaton,1, is a mathematical object. We do not mean a physical machine

such as your laptop or your car. A computation of a machine M consists of discrete steps, each of which

takes finite time. (“Time” is measured in abstract “time units,” rather than in physical time units such

as seconds.) At the beginning of any computation, M is in its start state. At each step, M executes some

combination of actions, such as:

1. M can from its input.

2. M can change its state.

3. M can write to its output.

4. M can fetch from, and store to, its memory.

5. M can halt.

We say a machine M is deterministic if there is never more than one step M can execute. If M has not

halted and has no possible step, we say M hangs. We will study a number of classes of machines. The

simplest such class is deterministic finite automata.

A DFA, deterministic finite automaton, is defined to be a quintuple M = (Q,Σ, δ, q0, F ) where

1. Q is a finite set, the set of states of M

2. Σ is the alphabet of M . All inputs of M must be strings over Σ.

3. δ : Q× Σ → Q is the transition function of M .

4. q0 ∈ Q is the start state of M .

5. F ⊆ Q is the set of final states of M .

6. A DFA knows its current state, but has no additional memory.

3.1 Regular Languages

A language L is regular if it is accepted by some DFA. Let M be the DFA (Q,Σ, δ, q0, F ). Let w ∈ Σ∗.

With input string w, a computation of M is as follows.

Initially M is in the start state q0.

While there is still unread input

Let q be the current state of M , and a the next unread input symbol.

M reads a.

M changes state to δ(a, q).

If the current state of M is final M reports acceptance.

Else M reports rejection.

L(M), the language accepted by M , is the set of all strings over Σ accepted by M .

1https://en. wikipedia.org/wiki/Automaton
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3.1.1 State Diagrams

A DFA M (Q,Σ, δ, q0, F ) is represented by a state diagraph2 is a labeled directed graph, which is conven-

tionally drawn as a labeled directed graph.

Q is the set of vertices of the diagraph.. The diagram includes an arrow (sometimes drawn with wiggles)

pointing at the start state, q0.

It is standard practice to show each non-final state as a labeled circle, and each final state as a labeled

double circle. To decrease business of the figure, I typically label the state qi with just the integer i.

A transition is an ordered triple (qi, a, qj) such that δ(ai, a) = qj, conventionally llustrated by a arc labeled

a from qi to qj. If there is more than one transition from qi to qj, typically only one arc with multiple

labels is shown.

M can also be represented as a matrix, where each row is label by a state and each column by a member

of Σ.

Example: Numerals 1 or 2 Modulo 3 L consists of all binary numerals for positive numbers not

divisible by 3, where leading zeros are not allowed. That is, L = {1, 10, 100, 101, 111, 1000, 1010, . . .} Below

we show the transition matrix and the state diagram of a DFA M which accepts L. M has five states and

two final states, q1 and q2.

0 1

q0 q4 q1

q1 q2 q3

q2 q1 q2

q3 q3 q1

q4 q4 q4
3

0 4

1 2
1

1

0

0

0 11

0,1

0

Dead States. A DFA can have a dead state, namely a non-final state from which no computation can

“escape.” That means, if a computation reaches a dead state, then the machine will not accept regardless

of the rest of the input string. The DFA shown above has a dead state, namely q4.

3.1.2 Deterministic and Non-deterministic Machines

The instaneous description, id, of a machine is a string which encodes all significant data of the machine

at a given instant. At each step of a computation, the id is updated. A machine is called deterministic

if for a given id and a given input, there is at most at most one immediately subsequent id, that is, the

id after the next step. A machine is called non-deterministic if there are some number of choices of id for

the next step. Note that “some number” could be always 0 or 1, hence a deterministic machine is also a

2https://en.wikipedia.org/wiki/ Deterministic finite automaton
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non-deterministic machine.

A non-deterministic automaton, abbreviated NFA, is almost the same as a DFA. An NFA is a quintuple

M = (Q,∆,Σ, q0, F ) such that

1. Q is the finite set of states of M

2. Σ is the alphabet of M .

3. ∆ : Q× Σ → 2Q is the transition function of M . (Recall that 2S , the powerset of a set S, is the set

of subsets of S.) That is, if the current state of M is q ∈ Q and M reads the symbol a ∈ Σ, M can

change state to any member of the set ∆(q, a).

4. q0 ∈ Q is the start state of M .

5. F ⊆ Q is the set of final states of M .

A computation of an NFA is similar to a computation of a DFA. At each step M reads a symbol and

changes state, although there might not be a single choice of that new state.

3.1.3 Accept and Decide

We say that a non-deterministic machine M accepts a string w if, given any input w, M halts in an

accepting state. We say M accepts a language L if M accepts every w ∈ L and does not accept any string

not in L. We say that M decides L if, given an input string w, M halts in an accepting state if w ∈ L and

halts in a rejecting state if w /∈ L. It is possible for M to run forever with some input w, neither accepting

nor rejecting. In that case, we say that M does not accept w, although we might never know it.

The definition of acceptance by a non-deterministic machine is trickier. For a given input string w, there

could be some computation of M which ends at a final state, but that computation might depend on M

making correct choices. If there are computations of M with input w that end in a final state, we say that

M accepts w, despite the possibility that some other sequence of choices does not end in a final state. We

call this benevolent non-determinism because we assume M makes all the correct guesses. The class of

languages accepted by non-deterministic automata is the regular languages.

Example Let M1 be the DFA whose transition matrix and state diagram are shown below.

a b

q0 q0 q1

q1 q2 q1

q2 q0 q1

Transition Table of M1

0

2

1

a

b

ba

b

a

Figure 1: State Diagram of M1

Figure 2 shows a computation of M1 which accepts the string abba, while Figure 3 shows a computation

of M1 which rejects the string abab.
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ba
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a
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ba
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a10
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a

b

ba

b

a

(2,  )λ(0,abba) (0,bba) (1,ba) (1,a)

Figure 2: Computation of M1 accepting abba. For simplicity, the states are labeled

0, 1, 2 instead of q0, q1, q2. The final state is doubly circled. The figures show

the sequence of ids. The current state is indicated in blue, and the current id is

underneath the figure. Note that the last state is final.
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a 10
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a

b

ba

b

a10
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a

b

ba

b

a 10

2
a

b

ba

b

a

(0,abab) (0,bab) (1,ab) (2,b) (1,  )λ

Figure 3: Computation of M1 rejecting abab. Note that the last state is not final.

Let L = L(M1) be the language accepted by M1. Name three members of L and three strings which are

not members of L. How would you describe L?

3.1.4 Non-Deterministic Finite Automata

An NFA has the same basic structure as a DFA, but for a given state and input symbol, there are any

number of subsequent states.

For any set S, we write 2S , for the powerset of S,

In a computation of an NFA, if the current state is q and the next input is a, then the machine may move to

any member of the set ∆(q, a) ⊆ Q. An NFA may also have the option of changing states without reading

a symbol; such a move is called a λmove or an ǫ move. Formally, an NFA is a quintuple (Q,Σ,∆, q0, F )

where the transition function is ∆ : Q× Σ ∪ {λ} → 2Q.

3.1.5 Example.

Let M3 be the NFA whose state diagram is shown in Figure 4.

1

2

0

b

a

a

b
λ

Figure 4: NFA M3

∆ a b λ

q0 {q0, q1} ∅ ∅

q1 ∅ {q2} ∅

q2 ∅ {q0} {q1}

Table 5: Transition Table of M3
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NFA Steps. The initial id of an NFA is the ordered pair (q0, w), where w is the input string. During

each step, either M reads a string and changes state, or uses a λ-move to change states and read nothing.

We show a computation of M3 with input abb in Figure 6. At the first step, M3 reads a and moves to q1.

Alternatively, M3 could read a and stay in q0, but then it would be impossible to accept the input. When

we are analyzing whether an NFA accepts a string, in case of a choice, we assume that the NFA always

make a choice which leads to acceptance, if that is possible.

At the third step, M3 has another choice. M3 makes the correct guess, namely to make a λ-move, reading

nothing and changing to state q1. This choice allows the input to be accepted at the next step.

1

2

0

b

a

a

b
λ

1

2

0

b

a

a

b
λ

1

2

0

b

a

a

b
λ

1

2

0

b

a

a

b
λ

1

2

0

b

a

a

b
λ

(2,  )λ(2,b)(1,bb)(0,abb) (1,b)

Figure 6: Accepting Computation of M3 with Input abb.

For a given input, the number of possible computations of an NFA could be an exponential function of the

length of the input string. Of these computations, there could be some that end in a final state, some that

end in a non-final state, and some that never finish reading the input, either by hanging or entering an

infinite loop. When we say that M accepts w, we mean that there is at least one computation of M starting

at (q0, w) which ends in a final state. An NFA always make the correct guess, if there is one, to achieve

acceptance. This rule, “benevolent non-determinishm,” also holds for other non-deterministic machines

that we study, such as push-down automata (PDA) and non-deterministic Turing machines (NTM).

3.2 Equivalent Machines

Informally, machines M1 and M2 are equivalent if the do the same thing. For example, two finite automata

are equivalent of they accept the same language. The number of steps of a computation does not play a

role in this definition; the number of steps required by two equivalent machines with the same input could

be different. If M is a finite automaton, there could be many other automata equivalent to M ; however,

the minimal DFA for a regular language is unique, as stated in Theorem 1.

Theorem 1 If L is a regular language, there is a unique minimal DFA which accetps L.

Minimal means smallest number of states. IF M1 is a minimal DFA which accepts L and M2 is also a

minimal DFA which accepts L, the state diagrams for the two machines are identical, expect for possibly

changing the names of the states.

3.2.1 Minimizing a DFA

We now give Hopcroft’s algorithm for finding minimizing a DFA. Let M be a DFA which accepts a language

L over an alphabet Σ. Hopcroft’s algorithm consists of two parts:

(a) Elimination of useless states.
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(b) Identification of equivalent (indistinguishable) states.

Useless States. Supose M = (Q,Σ, δ, q0, F ) is a finite automaton. A state qk of M is defined to be

useless if no computation of M ever reaches state qk.

Informally, two states qi, qj are equivalent if, after reading some prefix of the input string, it doesn’t matter

whether a computation is in qi or qj. More formally, we say that qi and qj are distinguished if one of the

following holds:

(a) qi ∈ F and qj /∈ F ,

(b) qi /∈ F and qj ∈ F ,

(c) For some a ∈ Σ, δ(qi, a) and δ(qj, a) are distinguished.

Note that the definition of “distinguished” is recursive. Finally, qi, qj ∈ Q are indistinguishable, that is,

equivalent, if they are not distinguished.
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Example. Let M4 be the DFA illustrated by the state diagram in Figure 7.

0

1

2

3

4

5 6

b
b

a a,b

ab

a

a a

b

ab

b

Figure 7: The DFA M

We first note that q6 is useless, hence

we delete it. We write a square array

whose rows and columns are the remain-

ing states. We mark the entry in row

qi and column q whenever we prove that

those two states are distinguished. Ini-

tially, no final state is equivalent to any

non-final state.

q0 q1 q2 q3 q4 q5

q0 × ×

q1 × ×

q2 × ×

q3 × ×

q4 × × × ×

q5 × × × ×

We now iterate through Q×Σ×Q. AAA

For each (qi, a, qj), we mark the (i, j)th

entry of the array if, for some x ∈ Σ,

we can determine that δ(qi, x) and δ(qj, x)

are distinguished.

We first note that δ(q0, b) = q1 and

δ(q2, b) = q4, which are distiguished. Thus

q0 and q2 are distinguished.

q0 q1 q2 q3 q4 q5

q0 × × ×

q1 × ×

q2 × × ×

q3 × ×

q4 × × × ×

q5 × × × ×

BBB Similarly, we can determine that the

pairs (q0, q3), (q1, q2), and (q1, q3) are dis-

tinguished, and we mark the array accord-

ingly.

q0 q1 q2 q3 q4 q5

q0 × × × ×

q1 × × × ×

q2 × × × ×

q3 × × × ×

q4 × × × ×

q5 × × × ×

CCC We iterate over Q × Σ × Q until no additional pairs are found to be distinguished. All unmarked

pairs are then equivalent. We identify the equivalent pairs (q0, q1), (q2, q3), and (q4, q5).
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The resulting “collapsed” DFA M5 is equivalent to M4, and is minimal. We illustrate M5 in Figure 8.

0/1 2/3 4/5
a b

a a,bb

Figure 8: M5, the Minimal DFA Equivalent to M4.

Another Example. Let M6) be the DFA illustrated by the state diagram in Figure 9.

0

1

2

3

4

5 6

b
b

a,b

a

a

a a

b

ab

b

a

b

Figure 9: The DFA M6

We first note that q6 is useless, hence we

delete it. As in the previous example,

We write a square array whose rows and

columns are the remaining states. Ini-

tially, no final state is equivalent to any

non-final state.

q0 q1 q2 q3 q4 q5

q0 × ×

q1 × ×

q2 × ×

q3 × ×

q4 × × × ×

q5 × × × ×

We now iterate through Q×Σ×Q. During

the first iteration, we observe q2 and q3 are

distinguished. because δ(q2, a) = q3 and

δ(q3, a) = q4 are distinguished.

q0 q1 q2 q3 q4 q5

q0 × ×

q1 × ×

q2 × × ×

q3 × × ×

q4 × × × ×

q5 × × × ×
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Continuing the first iteration, we can dis-

tinguish q0 from q2, since δ(q0, b) = q1,

which is distinguished from δ(q2, b) = q4.

Simlarly, we can distinguish q0 from q3, q1

from q2, and q1 from q3.

q0 q1 q2 q3 q4 q5

q0 × × × ×

q1 × × × ×

q2 × × × × ×

q3 × × × × ×

q4 × × × ×

q5 × × × ×

During the second iteration, we distin-

guish q0 and q1, since δ(q0, a) = q2 which

is now distinguished from δ(q1, a) = q3.

q0 q1 q2 q3 q4 q5

q0 × × × × ×

q1 × × × × ×

q2 × × × × ×

q3 × × × × ×

q4 × × × ×

q5 × × × ×

III Continuing to iterate over Q×Σ×Q, no further pairs are found to be distinguised. All unmarked pairs

are then equivalent. We identify the equivalent pairs (q4, q5). The resulting minimal DFA equivalent to M6

is illustrated in Figure 10.

4/50

1

2

3

ba

a

b

ab a

b

a,b

Figure 10: The minimal DFA equivalent to M6.
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3.3 NFA to DFA

Two finite automat are equivalent if they accept the same language. A language is regular if and only if

it is accepted by some NFA, and thus every NFA is equivalent to some DFA. Given an NFA M1 with n

states, the Rabin-Scott powerset construction yields an equivalent DFA M2 with 2n states. We can then

apply Hopcroft’s algorithm to obtain a minimal DFA, which may have fewer states.

Let M1 = (Q,Σ,∆, q0, F ) be an NFA. We first consider the case where M1 no λ-transitions.

Let F = (Q ⊆ Q : Q ∩ F 6= ∅). Let M2 =
(

2Q,Σ, δ, {q0},F
)

, where δ(a,Q) =
⋃

q∈Q
∆(q, a) for all Q ⊆ Q,

and F = (Q ⊆ Q : Q ∩ F 6= ∅). Then M2 is equivalent to M1.

If there are any λ-transitions, we first replace the initial NFA by its λ-closure, obtained by removing λ-

transitions one at a time, modifying F or δ at each step, according the following rules.

1. Pick a λ-transition from qi to qj.

2. If qj is final and qi is not, make qi final.

3. If qk ∈ δ(a, qj) for some a ∈ Σ ∪ {λ}, let qk become a member of δ(qi, a).

4. Repeat step 3 until there are no further changes.

5. Delete the λ-transition from qi to qj.

6. Return to step 1 if there are any more λ-transitions.

Figure 11 shows the complete calculation of a minimal DFA equivalent to an NFA.

Figure 11(a) shows the NFA M1.

Figure 11(b) shows the NFA after the λ-transitions from q0 to q2 and from q3 to q4 are removed.

Figure 11(c) shows the NFA after the λ-transition from q1 to q3 is removed, yielding the λ-closure of

M2.

Figure 11(d) is obtained by deleting the now useless state q4.

Figure 11(e) shows the NFA obtained by the powerset construction. There should be 24 states. Eleven

of those are not shown since they are useless. (The usual braces for the subsets are not shown.)

States {q0} and {q0, q2} are indistinguished, and are hence identified in the minimal DFA M2, shown

in Figure 11(f).

0

1

2

3

4

λ

a

λ

λ

a bab

0

1

2 4

3
λ

a

a
ab a,ba

0 2 4

31

a

a

a,b

a,bab a

0 2

31

a

a,b

a,baab

2

31

0,20
ab

a

a

b
a a,b

b

2

31

0/0,2
a

a,baab

b

(a) (b) (c)

(e)(d) (f)

Figure 11: Construction of a Minimal DFA Equivalent to an NFA.
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4 Regular Expressions

A regular expression is an algebraic expression that defines, or describes, a regular language. Regular

expressions make use of three of the closure properties of the class of regular languages given in Section

2.1: union, concatenation, and Kleene closure.

Every regular language is described by a regular expression. Regular expressions which describe the same

language are called equivalent. If Σ be the alphabet of L, a regular expression for L is a string over the

alphabet Σ+ {λ, 6o,+,∗ , (, )}. concatenation does not have an operator symbol, but is simply indicated by

juxtaposition. For example, the regular expressions a and b describe the languages {a} and {b}, respectively,

and thus ab is a regular expression which describes {ab}. Union is represented by “+”, while Kleene Closure

is reprented by ∗. Kleene closure has precedence over concatenation, which has precedence over union.

Parentheses are used in the usual way, to override precedence.

represented by “+”, concatenation, represented by concatenation, and Kleene closure, represented by ∗.

Among these operators, Kleene closure has highest precedence, followed by concatenation, followed by

union. Parentheses override precedence in the usual manner.

If a ∈ Σ, the regular expression a represents the language {a}. The regular expression λ represents the

language {λ}, and the regular expression 6o represents the empty language, ∅.

00

o

0 0 10
b

a b

a*b*

a,b

(a+b)*

0 1
a

aλ

a*

a

Figure 12: Regular Expressions over Σ = {a, b} with Equivalent DFA.

4.1 Combining Regular Expressions

We now show how to find a regular expression for the union, concatenation, or Kleene closure of languages

which already have regular epressions. In the list below, we use parentheses to ensure that operations are

done in the right order.

(a) If u is a regular expression for a regular language L, then (u) is also regular expression for L. (b)

If u, v are regular expressions for regular languages L and M , then u + v is a regular expression for the

union L+M . (c) If u, v are regular expressions for regular languages L and M , then (u)(v) is a regular

expression for the concatenation LM . One of both of those pairs of parentheses my be unnecessary. (d)

If u is regular expressions for a regular language L, then (u)∗ is a regular expression for the Kleene closure

L∗. The pair of parentheses may be unnecessary.
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In Figure 12 we show a DFA equivalent to six simple regular expressions.

Union is commutative, associate and idempotent, but concatenation is only associative. For example,

a+ b = b+ a, (a+ b) + c = a+ (b+ c), a+ a = a, and a(bc) = a(bc),

Concatenation distibutes over union on both sides; for example, a(b + c)d = abd + acd. Kleene closure

does not distribute over concatenation. For example, (ab)∗ 6= a∗b∗. Kleene closure is also idempotent: for

example, (a∗)∗ = a∗.

T/F Questions about Regular Expressions

(a) λ∗ = λ

(b) a+ λ = a

(c) a+ 6o = a

(d) 6o∗ = 6o

(e) 6o∗ = λ

(f) 6o(a+ b) = 6o

(g) 6o(a+ b) = a+ b

(h) ab∗ + ab∗ = ab∗

(i) (a+ ab) = a(b+ λ)

Answers to Questions:

(a) T

(b) F

(c) T

(d) F

(e) T

(f) T

(g) F

(h) T

(i) T

Five Definitions of a Regular Language. The follwing five definitions of a regular language are

equivalent:

1. A language is regular if and only if it is accepted by some DFA.

2. A language is regular if and only if it is accepted by some NFA.

3. A language is regular if and only if it is described by some regular expression.

4. A language is regular if and only if it is generated by a left-regular grammar.

5. A language is regular if and only if it is generated by a right-regular grammar.

We will give the definitions of left-regular and right-regular grammars later.

5 The Pumping Lemma

We can prove that a given language is regular by exhibiting a finite automaton which accepts it. The

pumping lemma gives a technique for proving that certain languages are not regular.

The method is to first prove the pumping lemma, which states that every string w which is a member of

some regular language L has a “pumpable” substring, namely a substring which can be duplicated without

leaving L. We give the formal statement below.

We can then, for example, prove that L = {anbn} is not regular, by showing that there are arbitrarily long

strings of L that do not have pumpable substrings.

Theorem 2 (Pumping Lemma) For any regular language L, there is an integer p such that for any

w ∈ L of length at least p, there are strings x, y, z such that the following four conditions hold: Condition

1. w = xyz
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Condition 2. |xy| ≤ p

Condition 3. y is not the empty string

Condition 4. For any integer i ≥ 0 xyiz ∈ L.

The number p is called a pumping length of L.

Proof: Let M = (Q,Σ, δ, q0, F ) be a DFA which accepts L.

Let w ∈ L of length n, where n ≥ p. Let ai be the ith symbol of w, that is, w = a1a2 · · · an. Pick an

accepting computation of M with input w. For 0 ≤ t ≤ n, let qt ∈ Q be the state of M after t steps of that

computation, that is, the state of M after reading For each 0 ≤ t ≤ n, Let w[1,t] = w1w2 · · ·wt, the prefix

of w of length t. For each 0 ≤ t ≤ n let qt be the state of M after t steps of the computation of M with

input w. Note that q0 = q0, the start state of M , and that δ(qt−1, at) = qt for all t. Thus δ(q0, w) = qn ∈ F .

The set of states Q has size p, and the sequence of states q0, q1, · · · qp has length p+1. The sequence must

then contain a duplicate; that is, qj = qk for some 0 ≤ j < k ≤ p. Thus, the computation path through M

with input w has a loop, as shown in Figure 13. When that loop is excised, the resulting computation is

still accepting, as shown in Figure 14. A computation which traverses the loop multiple times, as shown

in Figure 15, is also accepting. We use those observations to prove condition 4. below.

We now define the strings x, y, and z. Let x = w[1,j] = a1 · · · aj. Let y = aj+1 · · · ak, and let z = ak+1 · · · an.

Thus xyz = a1 · · · an = w, satisfying condition 1. |xy| = k ≤ p, satisfying condition 2. |y| = k − j >= 1,

satisfying condition 3.

We need to prove condition 4. Let i ≥ 0; we will show that xyiz is accepted by M . We have δ(qj, y) =

qk = qj. Repeating y, we have δ(qj, yi) = qk = qj. Finally, δ(q0, xyiz) = qn ∈ F , hence xyiz ∈ L.

In Figures 13, 14, and 15, n = 10, j = 3, and k = 8. to avoid clutter, we label each state qt as simply t in

the figures.

0 1 2 3 = 8 9 10

4 7

a1 a2 a3

a4 a8

a9 a10

a5

5 6a6

a7

Figure 13: Computation of M with Input w = xyz

0 1 2 3 = 8 9 10

4 7

a1 a2 a3

a4 a8

a9 a10

a5

5 6a6

a7
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Figure 14: Computation of M with Input xz

0 1 2 3 = 8 9 10

4 7

a1 a2 a3

a4 a8

a9 a10

a5

5 6a6

a7

Figure 15: Computation of M with Input xy2z

5.0.1 A Proof of Non-Regularity using the Pumping Lemma

We can use the pumping lemma to prove certain languages not to be regular, by contradiction.

Theorem 3 Let L = {anbn : n ≥ 0}. Then L is not regular.

Proof: By contradiction. Suppose L is regular. Let p be a pumping length of L. Let w = apbp. Note

that |w| ≥ p, hence there exist strings x, y, z which satisfy the four conditions of the pumping lemma. By

Condition 1., xyz = w. Thus xy is a prefix of w. By Condition 2., |xy| ≤ p, hence xy = ak for some k ≤ p.

By Condition 3., y = al for 1 ≤ ℓ ≤ k. It follows that x = ak−ℓ and z = ap−kbp. Thus xz = ap−ℓbp. By

Condition 4., we can pick i = 0 and we then have xy0z = xz ∈ L. Since ℓ ≥ 1, xz has more b’s than a’s,

and hence cannot be a member of L. Contradiction.

We conclude that L is not regular.
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