
Formal Languages and Automata

Contents

1 Introduction

Welcome to Formal Languages and Automata, taught at UNLV as CS456/656. Every university which

grants a degree in computer science should have an equivalent course. I expect every student to know high

school mathematics as well as the material of our prerequisite courses, including programming and discrete

mathematics. Our textbook is Formal Languages and Automata, by Peter Linz.

1.1 Formal Languages

1.1.1 Alphabets

An alphabet is a finite set of symbols . There is no definition of symbol. Alphabets used in this course

include:

The alphabet of all ASCII symbols.

The Roman alphabet: upper case, lower case, or both.

The decimal alphabet: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

The binary alphabet: {0, 1}.

The unary (caveman) alphabet: {1}.

Small subsets of the Roman alphabet, such as {a, b}.

1.1.2 Strings

A string is a finite sequence of symbols over some alphabet. For example, if Σ = {a, b, c}, then a, b,

aba, abccaa, are strings of length 1, 3, or 6 over {a, b, c}. The empty string, denoted λ (or ǫ) has length

zero and consists of no symbols.

We write Σ∗ to mean the set of all strings over the alphabet Σ. Σ∗, which is countably infinite. For any

string w ∈ Σ∗, we let |w| be the length of w.

The binary alphabet is of particular importance in computer science. We use the term binary string to

mean any string over the binary alphabet.

1

1.1.3 Languages

A language is defined to be a set of strings over a particular alphabet. If L is a language over Σ, then

L ⊆ Σ∗.

There is no definition of symbol, and thus anything can be a symbol. The language of DNA strings

is over the alphabet consisting of the four nucleotides: adenine, thymine, guanine, and cytosine, usually

abbreviated as A, T, G, and C.

1.1.4 Programs

A programming language is a set of programs , each of which is a string over the alphabet consisting of

all symbols used in that language, including blank and end-of-line. Pascal and C++ are examples of

programming languages.

A common claim is that languages are used for communication. This is true in many cases, but it is not

part of the definition of a language.

Natural Languages. In order for a set of strings to be a formal language, there must be a rigorous

mathematical definition of that set of srrings. Natural languages, such as English, lack that definition, and

are not studied in this course.

1.1.5 Numerals and Numbers

We distinguish between a number and a numeral. A number is an abstract object which has no physical

existence. A numeral is something (usually a string) which denotes a number. If n is a number, we write

〈n〉 to mean a numeral which denotes n.

1.2 Problems and Languages

We are primarily interested in infinite problems, that is, problems which have infinitely many instances.

For example, “What is 2+3?” is an instance of the addition problem.

A 0/1 problem is any problem where the answer for each instance is either 0 (false) or 1 (true). For

example, an instance of the primality problem is a numeral 〈n〉, and the answer is 1 (true) if n is prime, 0

(false) otherwise.

A problems that is not 0/1 could have a 0/1 version. For example, instead of asking for the prime factors

of n, we could ask whether n has a prime factor smaller than a given other number a.

Languages and 0/1 problems are essentially the same thing. For example, the language for the primality

problem is the set of all numerals for prime numbers. In general, if P is any 0,1 problem, the corresponding

language is the set of all true instances of P . Convrsely, every language L over an alphabet Σ has a

corresponding 0,1 problem, namely the membership problem for L. An instance is any string w over Σ,

and the question is whether w ∈ L.

2

1.3 Machines

A machine in this course is an abstract machine, which is a mathematical object. (The computer on your

desk is a physical machine.) A computation of a machine is a sequence of steps. A machine has an initial

configuration, also called the instanteous description, or id. There is an initial id, and at each step, the id

changes, according to the rules of the machine. A computation can be infinite, or end with a halt, or the

machine may hang, meaning there is no legal next step. Each id can be desribed by a string. This string

must encode everyihing needed for the computation, such as the machine’s current state, contents of its

memory, unread input, and (possibly) written output. A string is necessarily finite, but during an infinite

computation, the id could increase its length without limit.

1.3.1 Deterministic and Non-deterministic Machines

A machine automaton, plural automata, is called deterministic if for a given id and a given input, there is

at most one step the machine can take, i.e., at most one immediately subsequent id. A machine is called

non-deterministic there there is some number of choices at each step. Note that “some number” could be

always 0 or 1, and thus every deterministic machine is a non-deterministic machine

1.3.2 Accept and Decide

We say that a non-deterministic machine M accepts a string w if, given any input w, M halts in an

accepting state. We say M accepts a language L if M accepts every w ∈ L and does not accept any string

not in L. We say that M decides L if, given an input string w, M halts in an accepting state if w ∈ L and

halts in a rejecting state if w /∈ L. It is possible for M to run forever with some input w, neither accepting

nor rejecting. In that case, we say that M does not accept w, although we might never know it.

1.3.3 Deterministic Finite Automata

A machine M is called a finite automaton (FA) if it has finitely many states. A deterministic FA is called

a DFA, while a non-deterministic FA is called an NFA. As noted above, every DFA is an NFA, but not

vice-versa. A DFA always decides a language, but most textbooks refer to the language accepted by a DFA

M , which is (of course) the language decided by M .

1.3.4 Computation of a DFA

A DFA M has a finite set of states Q, one of which (usually called q0) is the start state. There is a subset

F ⊆ Q of final states. An input for a DFA is a string w ∈ Σ∗, where Σ is called the input alphabet. The

definition of DFA requires that there be exactly one action that a DFA can take, and that action is either

to change state or to halt.

Formally, M is the quintuple (Q,Σ, δ, q0, F) where Q is the set of states of M , Σ is the alphabet of M ,

δ : Q×Σ → Q is the transition function of M , q0 ∈ Q is the start state of M and F ⊆ Q is the set of final

states of M .

3

An id of a DFA M is an ordered pair (q, u), where q ∈ Q is the current state and u ∈ Σ∗ is the remaining

(unread) input. The initial id of M is (q0, w), where w is the input string. The steps of a computation of

M are as follows. Suppose the current id is (q, w).

1. If w is the empty string M halts and accepts if q ∈ F , halts and rejects if q /∈ F .

2. Otherwise, w is the concatenation aw′.

3. M reads a, and w′ becomes the remaining input.

4. M changes its state to δ(q, a).

The number of steps a DFA executes during a computation equals the length of the input string.

Regular Languages. A regular language is any language accepted by a DFA.

Example. Let M1 be the

DFA where Σ = {a, b}, Q =

{q0, q1, q2}, F = {q2}, and δ

is defined by the transition

table given in Table ??, and

illustrated as a state diagram

in Figure ??

δ a b

q0 q0 q1

q1 q2 q1

q2 q0 q1

Table ??

0

2

1

a

b

ba

b

a

Figure ??: State Diagram of M

Figure ?? shows a computation of M1 which accepts the string abba, while Figure ?? shows a computation

of M1 which rejects the string abab.

10

2
a

b

ba

b

a 10

2
a

b

ba

b

a 10

2
a

b

ba

b

a 10

2
a

b

ba

b

a10

2
a

b

ba

b

a

(2,)λ(0,abba) (0,bba) (1,ba) (1,a)

Figure ??: Computation of M1 accepting abba. For simplicity, the states are

labeled 0, 1, 2 instead of q0, q1, q2. The final state is doubly circled. The figures

show the sequence of ids. The current state is indicated in blue, and the current

id is underneath the figure. Note that the last state is final.

10

2
a

b

ba

b

a 10

2
a

b

ba

b

a 10

2
a

b

ba

b

a10

2
a

b

ba

b

a 10

2
a

b

ba

b

a

(0,abab) (0,bab) (1,ab) (2,b) (1,)λ

Figure ??: Computation of M1 rejecting abab. Note that the last state is not final.

Let L = L(M1) be the language accepted by M1. Name three members of L and three strings which are

not members of L. How would you describe L?

4

Dead States. A DFA may have a dead state, a state which is not final, and which the machine cannot

leave regardless of the remaining input. The machine shown above, in Figures ?? and ??, does not have a

dead state. The machine shown in Figure ?? has a dead state, q1.

1

2

0

ba

b

a

a,b

Figure ??: A DFA M2 with one dead state. Note that it is impossible to leave state q1.

How would you describe the language L(M2)?

1.3.5 Non-Deterministic Finite Automata

An NFA has the same basic structure as a DFA, but for a given state and input symbol, there are any

number of subsequent states.

For any set S, we write 2S , for the powerset of S,

In a computation of an NFA, if the current state is q and the next input is a, then the machine may move to

any member of the set ∆(q, a) ⊆ Q. An NFA may also have the option of changing states without reading

a symbol; such a move is called a λmove or an ǫ move. Formally, an NFA is a quintuple (Q,Σ,∆, q0, F)

where the transition function is ∆ : Q× Σ ∪ {λ} → 2Q.

1.3.6 Example.

Let M3 be the NFA whose state diagram is shown in Figure ??.

1

2

0

b

a

a

b
λ

Figure ??: NFA M3

∆ a b λ

q0 {q0, q1} ∅ ∅

q1 ∅ {q2} ∅

q2 ∅ {q0} {q1}

Table ??: Transition Table of

M3

NFA Steps. The initial id of an NFA is the ordered pair (q0, w), where w is the input string. During

each step, either M reads a string and changes state, or uses a λ-move to change states and read nothing.

We show a computation of M3 with input abb in Figure ??. At the first step, M3 reads a and moves to q1.

Alternatively, M3 could read a and stay in q0, but then it would be impossible to accept the input. When

we are analyzing whether an NFA accepts a string, in case of a choice, we assume that the NFA always

make a choice which leads to acceptance, if that is possible.

At the third step, M3 has another choice. M3 makes the correct guess, namely to make a λ-move, reading

nothing and changing to state q1. This choice allows the input to be accepted at the next step.

5

1

2

0

b

a

a

b
λ

1

2

0

b

a

a

b
λ

1

2

0

b

a

a

b
λ

1

2

0

b

a

a

b
λ

1

2

0

b

a

a

b
λ

(2,)λ(2,b)(1,bb)(0,abb) (1,b)

Figure ??: Accepting Computation of M3 with Input abb.

For a given input, the number of possible computations of an NFA could be an exponential function of the

length of the input string. Of these computations, there could be some that end in a final state, some that

end in a non-final state, and some that never finish reading the input, either by hanging or entering an

infinite loop. When we say that M accepts w, we mean that there is at least one computation of M starting

at (q0, w) which ends in a final state. An NFA always make the correct guess, if there is one, to achieve

acceptance. This rule, “benevolent non-determinishm,” also holds for other non-deterministic machines

that we study, such as push-down automata (PDA) and non-deterministic Turing machines (NTM).

Equivalent Machines

Informally, machines M1 and M2 are equivalent if the do the same thing. For example, two finite automata

are equivalent of they accept the same language. The number of steps of a computation does not play a

role in this definition; the number of steps required by two equivalent machines with the same input could

be different. If M is a finite automaton, there could be many other automata equivalent to M ; however,

the minimal DFA for a regular language is unique, as stated in Theorem ??.

Theorem 1 If L is a regular language, there is a unique minimal DFA which accetps L.

Minimal means smallest number of states. IF M1 is a minimal DFA which accepts L and M2 is also a

minimal DFA which accepts L, the state diagrams for the two machines are identical, expect for possibly

changing the names of the states.

Minimizing a DFA

We now give Hopcroft’s algorithm for finding minimizing a DFA. Let M be a DFA which accepts a language

L over an alphabet Σ. Hopcroft’s algorithm consists of two parts:

(a) Elimination of useless states.

(b) Identification of equivalent (indistinguishable) states.

Useless States. Supose M = (Q,Σ, δ, q0, F) is a finite automaton. A state qk of M is defined to be

useless if no computation of M ever reaches state qk.

Informally, two states qi, qj are equivalent if, after reading some prefix of the input string, it doesn’t matter

whether a computation is in qi or qj. More formally, we say that qi and qj are distinguished if one of the

following holds:

(a) qi ∈ F and qj /∈ F ,

6

(b) qi /∈ F and qj ∈ F ,

(c) For some a ∈ Σ, δ(qi, a) and δ(qj, a) are distinguished.

Note that the definition of “distinguished” is recursive. Finally, qi, qj ∈ Q are indistinguishable, that is,

equivalent, if they are not distinguished.

7

Example. Let M4 be the DFA illustrated by the state diagram in Figure ??.

0

1

2

3

4

5 6

b
b

a a,b

ab

a

a a

b

ab

b

Figure ??: The DFA M

We first note that q6 is useless, hence

we delete it. We write a square array

whose rows and columns are the remain-

ing states. We mark the entry in row

qi and column q whenever we prove that

those two states are distinguished. Ini-

tially, no final state is equivalent to any

non-final state.

q0 q1 q2 q3 q4 q5

q0 × ×

q1 × ×

q2 × ×

q3 × ×

q4 × × × ×

q5 × × × ×

We now iterate through Q×Σ×Q. AAA

For each (qi, a, qj), we mark the (i, j)th

entry of the array if, for some x ∈ Σ,

we can determine that δ(qi, x) and δ(qj, x)

are distinguished.

We first note that δ(q0, b) = q1 and

δ(q2, b) = q4, which are distiguished. Thus

q0 and q2 are distinguished.

q0 q1 q2 q3 q4 q5

q0 × × ×

q1 × ×

q2 × × ×

q3 × ×

q4 × × × ×

q5 × × × ×

BBB Similarly, we can determine that the

pairs (q0, q3), (q1, q2), and (q1, q3) are dis-

tinguished, and we mark the array accord-

ingly.

q0 q1 q2 q3 q4 q5

q0 × × × ×

q1 × × × ×

q2 × × × ×

q3 × × × ×

q4 × × × ×

q5 × × × ×

CCC We iterate over Q × Σ × Q until no additional pairs are found to be distinguished. All unmarked

pairs are then equivalent. We identify the equivalent pairs (q0, q1), (q2, q3), and (q4, q5).

8

The resulting “collapsed” DFA M5 is equivalent to M4, and is minimal. We illustrate M5 in Figure ??.

0/1 2/3 4/5
a b

a a,bb

Figure ??: M5, the Minimal DFA Equivalent to M4.

Another Example. Let M6) be the DFA illustrated by the state diagram in Figure ??.

0

1

2

3

4

5 6

b
b

a,b

a

a

a a

b

ab

b

a

b

Figure ??: The DFA M6

We first note that q6 is useless, hence we

delete it. As in the previous example,

We write a square array whose rows and

columns are the remaining states. Ini-

tially, no final state is equivalent to any

non-final state.

q0 q1 q2 q3 q4 q5

q0 × ×

q1 × ×

q2 × ×

q3 × ×

q4 × × × ×

q5 × × × ×

We now iterate through Q×Σ×Q. During

the first iteration, we observe q2 and q3 are

distinguished. because δ(q2, a) = q3 and

δ(q3, a) = q4 are distinguished.

q0 q1 q2 q3 q4 q5

q0 × ×

q1 × ×

q2 × × ×

q3 × × ×

q4 × × × ×

q5 × × × ×

9

Continuing the first iteration, we can dis-

tinguish q0 from q2, since δ(q0, b) = q1,

which is distinguished from δ(q2, b) = q4.

Simlarly, we can distinguish q0 from q3, q1

from q2, and q1 from q3.

q0 q1 q2 q3 q4 q5

q0 × × × ×

q1 × × × ×

q2 × × × × ×

q3 × × × × ×

q4 × × × ×

q5 × × × ×

During the second iteration, we distin-

guish q0 and q1, since δ(q0, a) = q2 which

is now distinguished from δ(q1, a) = q3.

q0 q1 q2 q3 q4 q5

q0 × × × × ×

q1 × × × × ×

q2 × × × × ×

q3 × × × × ×

q4 × × × ×

q5 × × × ×

III Continuing to iterate over Q×Σ×Q, no further pairs are found to be distinguised. All unmarked pairs

are then equivalent. We identify the equivalent pairs (q4, q5). The resulting minimal DFA equivalent to M6

is illustrated in Figure ??.

4/50

1

2

3

ba

a

b

ab a

b

a,b

Figure ??: The minimal DFA equivalent to M6.

10

NFA to DFA

Two finite automat are equivalent if they accept the same language. A language is regular if and only if

it is accepted by some NFA, and thus every NFA is equivalent to some DFA. Given an NFA M1 with n

states, the Rabin-Scott powerset construction yields an equivalent DFA M2 with 2n states. We can then

apply Hopcroft’s algorithm to obtain a minimal DFA, which may have fewer states.

Let M1 = (Q,Σ,∆, q0, F) be an NFA. We first consider the case where M1 no λ-transitions.

Let F = (Q ⊆ Q : Q ∩ F 6= ∅). Let M2 =
(

2Q,Σ, δ, {q0},F
)

, where δ(a,Q) =
⋃

q∈Q
∆(q, a) for all Q ⊆ Q,

and F = (Q ⊆ Q : Q ∩ F 6= ∅). Then M2 is equivalent to M1.

If there are any λ-transitions, we first replace the initial NFA by its λ-closure, obtained by removing λ-

transitions one at a time, modifying F or δ at each step, according the following rules.

1. Pick a λ-transition from qi to qj.

2. If qj is final and qi is not, make qi final.

3. If qk ∈ δ(a, qj) for some a ∈ Σ ∪ {λ}, let qk become a member of δ(qi, a).

4. Repeat step 3 until there are no further changes.

5. Delete the λ-transition from qi to qj.

6. Return to step 1 if there are any more λ-transitions.

Figure ?? shows the complete calculation of a minimal DFA equivalent to an NFA.

Figure ??(a) shows the NFA M1.

Figure ??(b) shows the NFA after the λ-transitions from q0 to q2 and from q3 to q4 are removed.

Figure ??(c) shows the NFA after the λ-transition from q1 to q3 is removed, yielding the λ-closure of

M2.

Figure ??(d) is obtained by deleting the now useless state q4.

Figure ??(e) shows the NFA obtained by the powerset construction. There should be 24 states. Eleven

of those are not shown since they are useless. (The usual braces for the subsets are not shown.)

States {q0} and {q0, q2} are indistinguished, and are hence identified in the minimal DFA M2, shown

in Figure ??(f).

0

1

2

3

4

λ

a

λ

λ

a bab

0

1

2 4

3
λ

a

a
ab a,ba

0 2 4

31

a

a

a,b

a,bab a

0 2

31

a

a,b

a,baab

2

31

0,20
ab

a

a

b
a a,b

b

2

31

0/0,2
a

a,baab

b

(a) (b) (c)

(e)(d) (f)

Figure ??: Construction of a Minimal DFA Equivalent to an NFA.

11

Regular Expressions

A regular expression is an algebraic expression that defines, or describes, a regular language. Regular

expressions make use of closure properties of the class of regular languages.

Closure Properties of the Class of Regular Languages

We define operations on langagues.

1. (Union) If L1 and L2 are regular languages, their union L1 ∪L2, usually written L1+L2, is a regular

language.

2. (Intersection) If L1 and L2 are regular languages, their intersection L1 ∩ L2 is a regular language.

3. (Complement) If L is a language over an alphabet Σ, the complement of L is the set of all strings

over Σ which are not members of L. We write Σ∗\L or L′ for the complement of L. The complement

of any regular language is regular.

4. (Concatenation) If L1 and L2 are languages, their concatenation is L1L2 = {uv : u ∈ L1, v ∈ L2}. If

L1 and L2 are regular, L1L2 is regular. We define “powers” of a language by repeated concatentation.

L2 = LL, L3 = LLL, and so forth. L1 = L and L0 = {λ}, the language consisting of just one string,

the empty string.

5. (Kleene Closure) We define the Kleene closure of a language L to be the union of all powers of L,

written L∗. We can write L∗ = L0+L1+L2+ · · · Formally, a string is in L∗ if it is the concatenation

of finitely many members of L. It is important to note that the empty string is a always a member

of L∗. If L is regular, L∗ is regular.

Exercise 1 Let L1 = {a, ab, c} and L2 = {λ, a, b}.

(a) Find L1 + L2. Ans: {λ, a, b, c, ab}

(b) Find L1 ∩ L2. Ans: {a}

(c) Find L1L2. Ans: {a, c, aa, ca, cb, aba, abb}

(d) Draw a state diagram for a DFA which accepts the complement of the language accepted by the

DFA in Figure 2.

Ans: Simply invert the DFA defined in Table ??

whose state diagram is given by Figure ??. mean-

ing that every final state becomes non-final and

every non-final state becomes final. (This trick

does not work for an NFA.)

a

b

ba

b

a 1

2

0

Figure ??: State Diagram of a DFA which Accepts

the Complement of the Language Accepted by the

DFA whose State Diagram is Shown in Figure ??.

Regular Expressions

Every regular expression describes a regular language; conversely, every regular language L is described by

a regular expression, but different regular expressions can describe the same language. If Σ be the alphabet

12

of L, a regular expression for L is a string over the alphabet Σ + {λ, 6o,+,∗ , (,)}.

Regular expressions for languages over Σ are algebraic expressions, where the variables are the symbols of

Σ, together with λ and 6o; and the operators are union, represented by “+”, concatenation, represented by

concatenation, and Kleene closure, represented by ∗. Among these operators, Kleene closure has highest

precedence, followed by concatenation, followed by union. Parentheses override precedence in the usual

manner.

If a ∈ Σ, the regular expression a represents the language {a}. The regular expression λ represents the

language {λ}, and the regular expression 6o represents the empty language, ∅.

00

o

0 0 10
b

a b

a*b*

a,b

(a+b)*

0 1
a

aλ

a*

a

Figure ??: Regular Expressions over Σ = {a, b} with Equivalent DFA.

Combining Regular Expressions

We now show how to find a regular expression for the union, concatenation, or Kleene closure of languages

which already have regular epressions. In the list below, we use parentheses to ensure that operations are

done in the right order.

(a) If u is a regular expression for a regular language L, then (u) is also regular expression for L. (b)

If u, v are regular expressions for regular languages L and M , then u + v is a regular expression for the

union L+M . (c) If u, v are regular expressions for regular languages L and M , then (u)(v) is a regular

expression for the concatenation LM . One of both of those pairs of parentheses my be unnecessary. (d)

If u is regular expressions for a regular language L, then (u)∗ is a regular expression for the Kleene closure

L∗. The pair of parentheses may be unnecessary.

In Figure ?? we show a DFA equivalent to six simple regular expressions.

Union is commutative, associate and idempotent, but concatenation is only associative. For example,

a+ b = b+ a, (a+ b) + c = a+ (b+ c), a+ a = a, and a(bc) = a(bc),

Concatenation distibutes over union on both sides; for example, a(b + c)d = abd + acd. Kleene closure

does not distribute over concatenation. For example, (ab)∗ 6= a∗b∗. Kleene closure is also idempotent: for

example, (a∗)∗ = a∗.

13

T/F Questions about Regular Expressions

(a) λ∗ = λ

(b) a+ λ = a

(c) a+ 6o = a

(d) 6o∗ = 6o

(e) 6o∗ = λ

(f) 6o(a+ b) = 6o

(g) 6o(a+ b) = a+ b

(h) ab∗ + ab∗ = ab∗

(i) (a+ ab) = a(b+ λ)

Answers to Questions:

(a) T

(b) F

(c) T

(d) F

(e) T

(f) T

(g) F

(h) T

(i) T

Five Definitions of a Regular Language. The follwing five definitions of a regular language are

equivalent:

1. A language is regular if and only if it is accepted by some DFA.

2. A language is regular if and only if it is accepted by some NFA.

3. A language is regular if and only if it is described by some regular expression.

4. A language is regular if and only if it is generated by a left-regular grammar.

5. A language is regular if and only if it is generated by a right-regular grammar.

We will get to the definitions of left-regular and right-regular grammars later.

The Pumping Lemma

We can prove that a given language is regular by exhibiting a finite automaton which accepts it. The

pumping lemma gives a technique for proving that certain languages are not regular.

The method is to first prove the pumping lemma, which states that every string w which is a member of

some regular language L has a “pumpable” substring, namely a substring which can be duplicated without

leaving L. We give the formal statement below.

We can then, for example, prove that L = {anbn} is not regular, by showing that there are arbitrarily long

strings of L that do not have pumpable substrings.

Theorem 2 (Pumping Lemma) For any regular language L, there is an integer p such that for any

w ∈ L of length at least p, there are strings x, y, z such that the following four conditions hold: Condition

1. w = xyz

Condition 2. |xy| ≤ p

Condition 3. y is not the empty string

Condition 4. For any integer i ≥ 0 xyiz ∈ L.

The number p is called a pumping length of L.

Proof: Let M = (Q,Σ, δ, q0, F) be a DFA which accepts L.

Let w ∈ L of length n, where n ≥ p. Let ai be the ith symbol of w, that is, w = a1a2 · · · an. Pick an

accepting computation of M with input w. For 0 ≤ t ≤ n, let qt ∈ Q be the state of M after t steps of that

14

computation, that is, the state of M after reading For each 0 ≤ t ≤ n, Let w[1,t] = w1w2 · · ·wt, the prefix

of w of length t. For each 0 ≤ t ≤ n let qt be the state of M after t steps of the computation of M with

input w. Note that q0 = q0, the start state of M , and that δ(qt−1, at) = qt for all t. Thus δ(q0, w) = qn ∈ F .

The set of states Q has size p, and the sequence of states q0, q1, · · · qp has length p+1. The sequence must

then contain a duplicate; that is, qj = qk for some 0 ≤ j < k ≤ p. Thus, the computation path through M

with input w has a loop, as shown in Figure ??. When that loop is excised, the resulting computation is

still accepting, as shown in Figure ??. A computation which traverses the loop multiple times, as shown

in Figure ??, is also accepting. We use those observations to prove condition 4. below.

We now define the strings x, y, and z. Let x = w[1,j] = a1 · · · aj. Let y = aj+1 · · · ak, and let z = ak+1 · · · an.

Thus xyz = a1 · · · an = w, satisfying condition 1. |xy| = k ≤ p, satisfying condition 2. |y| = k − j >= 1,

satisfying condition 3.

We need to prove condition 4. Let i ≥ 0; we will show that xyiz is accepted by M . We have δ(qj, y) =

qk = qj. Repeating y, we have δ(qj, yi) = qk = qj. Finally, δ(q0, xyiz) = qn ∈ F , hence xyiz ∈ L.

In Figures ??, ??, and ??, n = 10, j = 3, and k = 8. to avoid clutter, we label each state qt as simply t in

the figures.

0 1 2 3 = 8 9 10

4 7

a1 a2 a3

a4 a8

a9 a10

a5

5 6a6

a7

Figure ??: Computation of M with Input w = xyz

0 1 2 3 = 8 9 10

4 7

a1 a2 a3

a4 a8

a9 a10

a5

5 6a6

a7

Figure ??: Computation of M with Input xz

15

0 1 2 3 = 8 9 10

4 7

a1 a2 a3

a4 a8

a9 a10

a5

5 6a6

a7

Figure ??: Computation of M with Input xy2z

A Proof of Non-Regularity using the Pumping Lemma

We can use the pumping lemma to prove certain languages not to be regular, by contradiction.

Theorem 3 Let L = {anbn : n ≥ 0}. Then L is not regular.

Proof: By contradiction. Suppose L is regular. Let p be a pumping length of L. Let w = apbp. Note

that |w| ≥ p, hence there exist strings x, y, z which satisfy the four conditions of the pumping lemma. By

Condition 1., xyz = w. Thus xy is a prefix of w. By Condition 2., |xy| ≤ p, hence xy = ak for some k ≤ p.

By Condition 3., y = al for 1 ≤ ℓ ≤ k. It follows that x = ak−ℓ and z = ap−kbp. Thus xz = ap−ℓbp. By

Condition 4., we can pick i = 0 and we then have xy0z = xz ∈ L. Since ℓ ≥ 1, xz has more b’s than a’s,

and hence cannot be a member of L. Contradiction.

We conclude that L is not regular.

16

