

CSC 456/656 S26 Study Guide First Examination February 11, 2026

1. True or False. T = true, F = false, and O = open, meaning that the answer is not known to science at this time.
 - (i) _____ Every subset of a regular language is regular.
 - (ii) _____ The set of binary numerals for prime numbers is in \mathcal{P} -TIME.
 - (iii) _____ Every language is countable.
 - (iv) _____ The set of languages over the binary alphabet is countable.
 - (v) _____ $\mathcal{P} = \mathcal{NP}$.
 - (vi) _____ The complement of any \mathcal{P} -TIME language is \mathcal{P} -TIME.
 - (vii) _____ The complement of any \mathcal{NP} language is \mathcal{NP} .
 - (viii) _____ The complement of any decidable language is decidable.
 - (ix) _____ If L is both \mathcal{NP} and co- \mathcal{NP} , then L must be \mathcal{P} -TIME.
 - (x) _____ If L is both \mathcal{RE} and co- \mathcal{RE} , then L must be decidable.
 - (xi) _____ Every context-free language is \mathcal{P} -TIME.
 - (xii) _____ The halting problem is \mathcal{RE} .
 - (xiii) _____ The CFG equivalence problem is \mathcal{RE} .
 - (xiv) _____ The language accepted by a DFA M contains the empty string if and only if the start symbol of M is final.
2. Let L be the language of all binary strings which do not contain the substring 010. Draw a DFA which accepts L .

3. Construct a minimal DFA equivalent to M the NFA shown below.

4. Give a regular expression for the language accepted by the NFA shown in problem 3.

5. Give a language which is not regular.

6. Let L be the set of binary numerals for positive integers which are equivalent to 1 modulo 3. ($\langle n \rangle$ such that $n \% 3 = 1$) That is, $L = \{1, 100, 111, 1010, 1101, \dots\}$. Draw a DFA that accepts L .

7. Draw a minimal DFA which accepts each of the following languages.

- (i) The language $\{a\}$.
- (ii) The language $\{\lambda\}$.
- (iii) The empty language.

Draw the state diagram for a DFA which accepts the language generated by the following regular grammar. Hint: the DFA must have at least 3 states.

- 1. $S \rightarrow aS$
- 2. $S \rightarrow bA$
- 4. $A \rightarrow a$
- 5. $A \rightarrow bS$

9. If someone proved that every binary numeral could be factored into primes in polynomial time, what would be the practical consequence?

10. State the *certificate/verification* definition of the class \mathcal{NP} .