
Shortest Path Algorithms

Dijkstra’s Algorithm for the Single Pair Shortest Path Problem

In a weighted directed graph with no negative weights, in the worst case, it takes just as long
to solve the single pair shortest path problem using Dijkstra’s algorithm as it takes to solve the
single source problem. However, it is possible that it will take less time. Suppose, for example,
that the minimum weight path from s to t is less than the maximum weight of any path from x.
Then, as soon as we move the node t to the “fully processed” set, we are done, since we don’t
care about the values for the remaining nodes that are not fully processed.

Equivalent Weightings

Suppose G is a directed graph. Let W1 and W2 be two edge weightings on G, with no negative
cycles. If σ is any path in G, we let |σ|

i
be the sum of the edges of σ, using the weight Wi. If x, y

are nodes of G, we define di(x, y) to be the the smallest value of |σ|
i
for any path σ from x to y.

We say that W1 and W2 are equivalent with respect to shortest paths if the two weight functions
give the same paths for all shortest path problems. That is, if σ is a path from x to y, then
|σ|

1
= d1(x, y) if and only if |σ|

2
= d2(x, y). If h satisfies the condition that h(x) ≤ W1(x, y)+h(y)

for every edge (x, y), then W2 will have no negative values.

Computing an Equivalent Weighting

We can compute a weighting W2 equivalent to W1, if we are given a function h on G. For any
edge (x, y) of G, define

W2(x, y) = W1(x, y)− h(x) + h(y)

Johnson’s Algorithm

In Johnson’s algorithm, given a weighted directed graph (G,W1) with no negative cycles, we first
define G∗ to be the augmented graph consisting of all the nodes and edges of G, together with
one additional node s∗, plus an edge from s∗ to every node of G. We then extend the weighting
W1 to G∗ by defining W1(s

∗, x) = 0 for all x ∈ G. Let f(x) be the length of the shortest path
from s∗ to x in G∗. Note that f(x) ≤ 0 for all x. Use h(x) = −f(x) to define an equivalent weight
function W2. All values of W2 will be non-negative. We can then apply Dijkstra’s algorithm.

1

The A∗ Algorithm

Let G1 = (G,W1) be a weighted directed graph with no negative cycles, and let s, t be distin-
guished source and target nodes. Let h be a function (the heuristic on G which satisfies the con-
dition that h(x) ≤ W1(x, y)+h(y) for any edge (x, y) of G. Let W2(x, y) = W1(x, y)−h(x)+h(y).
We can then solve the single pair shortest problem in G1 by solving the same problem for
G2 = (G,W2).

Will it be faster? That depends on the heuristic. Remember: there is no general way to find a
heuristic; it has to come out of the specific application in some way, or be given to you by the
person (me in this case) who gives you the problem.

Assignment

Consider the graph G illustrated below. The first figure shows G has a weighted graph, where
the number on an edge {x, y} is equal to both W1(x, y) and W1(y, x). That is, we can think of
G1 as a symmetric weighted graph. How much time would it take to find the shortest path from
s to t? Your heap would eventually contain all the nodes. (Or maybe all but one; I’m not sure.)
So, you pay for the single source solution, even though you don’t need it.

The second figure shows the heuristic, in red. (Don’t ask how I came up with it. I just made up
numbers that work.)

Here is your assignment. Note that in the large copy of G, each edge has been replaced by two
edges, one in each direction.

1. Mark the large copy with the second weight function, W2.

2. Use Dijkstra’s algorithm for G2 = (G,W2) to find the shortest path, in G1, from s to t. It
is amazingly fast.

8

6

14

9

13

17
8

8

258
8

15
14

12
11

8

13

7

14

15

12

1514

11
15

10
9

814
612

11

14

11

15

13 9 0

9

201624

14

20

30

25

31

38

38

30

28

40

4249

29

37

43

36

t

s
a

b
c

d

e
fh

k l
o

p

q

m

i

n
j

g

u

r
t

s
a

b
c

d

e
fh

k l
o

p

q

m

i

n
j

g

u

r

2

t

s
a

b
c

d

e
fh

k l
o

p

q

m

i

n
j

g

u

r

3

Edit Distance

The dynamic programming algorithm for edit distance can be replaced by Dijkstra’s algorithm.
The running is then much smaller, if the two words are close.

Find the edit distance between fluorouracil and florouricil . The matrix obtained by dynamic
programming is shown in Figure 1. Figure 2 shows values at those nodes which will be visited
and placed in the heap when we use Dijkstra’s algorithm.

f l o r o u r i c i l

0 1 2 3 4 5 6 7 8 9 10 11

f 1 0 1 2 3 4 5 6 7 8 9 10

l 2 1 0 1 2 3 4 5 6 7 8 9

u 3 2 1 1 2 3 4 5 6 7 8 9

o 4 3 2 1 2 2 3 4 5 6 7 8

r 5 4 3 2 1 2 3 4 5 6 7 8

o 6 5 4 3 2 1 2 3 4 5 6 7

u 7 6 5 4 3 2 1 2 3 4 5 6

r 8 7 6 5 4 3 2 1 2 3 4 5

a 9 8 7 6 5 4 3 2 2 3 4 5

c 10 9 8 7 6 5 4 3 3 2 3 4

i 11 10 9 8 7 6 5 4 4 3 2 3

l 12 11 10 9 8 7 6 5 5 4 3 2

Figure 1

f l o r o u r i c i l

0 1 2 3

f 1 0 1 2 3

l 2 1 0 1 2 3

u 3 2 1 1 2 3

o 3 2 1 2 2 3

r 3 2 1 2 3

o 3 2 1 2 3

u 3 2 1 2 3

r 3 2 1 2 3

a 3 2 2 3

c 3 3 2 3

i 3 2 3

l 3 2

Figure 2

Figure 3 shows the heuristic h obtained by considering only the length of the remaining suffix. The
adjusted edit distance between the two words is now only 1. When we use Dijkstra’s algorithm
using adjusted weights, we only compute the values shown in Figure 4.

f l o r o u r i c i l

1 2 3 4 5 6 7 8 9 10 11 12

f 0 1 2 3 4 5 6 7 8 9 10 11

l 1 0 1 2 3 4 5 6 7 8 9 10

u 2 1 0 1 2 3 4 5 6 7 8 9

o 3 2 1 0 1 2 3 4 5 6 7 8

r 4 3 2 1 0 1 2 3 4 5 6 7

o 5 4 3 2 1 0 1 2 3 4 5 6

u 6 5 4 3 2 1 0 1 2 3 4 5

r 7 6 5 4 3 2 1 0 1 2 3 4

a 8 7 6 5 4 3 2 1 0 1 2 3

c 9 8 7 6 5 4 3 2 1 0 1 2

i 10 9 8 7 6 5 4 3 2 1 0 1

l 11 10 9 8 7 6 5 4 3 2 1 0

Figure 3

f l o r o u r i c i l

0 2

f 0 0 2

l 2 0 0 2

u 2 0 1 3

o 2 0 2

r 2 0 2

o 2 0 2

u 2 0 2

r 2 0 2

a 2 1 3

c 3 1 3

i 3 1 3

l 3 1

Figure 4

4

Can the King Quit in a Week or Less?

The Grand Vizier of Wonderland has been summoned by the King. “I’m tired of this job,” he
complains.

“According to the ancient Word-Ladder rules laid down by our founder in 1877, you can only
change one letter a day.” The Vizier stroked his beard. “I can take you from KING to QUIT in
eight days.”

KING

SING

SANG

SAND

SAID

SLID

SLIT

SUIT

QUIT

“My stable boy could do that well!” thundered the King, “I don’t want to sit around here more
than another week!”

Simple Supergraphs

Suppose a weighted directed graph G is a subsgraph of a larger graph S, which we call the
“supergraph,” and suppose that, because of its regular structure, it is very easy to solve shortest
path problems in S. Then we can use the weights of the shortest paths in S as heuristics for
applying the A∗ algorithm to G.

For example, let G be the word-ladder graph of 4-letter common English words, and S the word-
ladder graph of all strings of length 4 over the Roman alphabet, which consists of 264 = 456976
words, each of which has degree 100. The shortest distance between two words in S is simply the
number of places where a letter differs, which is never more than 4. For the King’s problem, h(x)
is the distance from x to QUIT, and thus h(KING) = 4.

Design an efficient algorithm for solving the four letter English word-ladder problem. Assume
that your program has access to a dictionary of all four letter English words, where find can be
executed quickly.

5

