University of Nevada, Las Vegas Computer Science 477/677 Fall 2025
Answers to Assignment 3: Due Saturday October 4, 2025

Follow our TA Louis DuMontet’s (dumontet@unlv.nevada.edu) instructions on how to turn in the assignment.

Name:

You are permitted to work in groups, get help from others, read books, and use the internet.

1. Fill in the blanks.

(a) No good programmer would ever use an unsorted list as a search structure. F (True or False.)
(

b

Heapsort is a fast version of selection sort

(
d

(e) The items of a priority queue represent unfulfilled obligations

)
)
¢) Treesort is a fast version of insertion sort
) Shell sort is inspired by bubblesort but is faster.
)

2. Walk throught the computation of polyphase mergesort with the initial array QZRLFKNSHTWDMVJE.
QZRLFKNSHTWDMVJE

QZLHTWJ
RFKNSDMVE

ORZDHMTVW
FKLNSEJ

FKLNORSZ
DEHJMTVW

DEFJKLHMNORSTVWZ

3. Solve the following recurrences. Express the answers using © notation. Problems (a)—(f) use the Bently-
Biostein-Saxe method, the master theorem. Problems (g)—(j) use the anti-derivative method. Problems
(k)-(m) use the Akra-Bazzi method. Problem (n) uses the master theorem, after the substitution n =

logm.
(a) F(n) =2F(n/2)+n

A=2 B=2C=1 logg A=1=C, thus
F(n) = ©(nlogn)

(b) F(n)=2F(n/2)+1

A=2 B=2C=0.logg A=1>C, thus
F(n) =©(n)



(c) F(n)=F(n/2)+1

A=1,B=2,C=0. logg A=0=C, thus
F(n) = ©(logn)

(d) F(n)=9F(n/3)+n

A=9,B=3,C=1 loggA=2>C, thus
F(n) =06(n?)

(e) F(n)=3F(n/3)+n

A=3,B=3,C=1 logg A=1=C, thus
F(n) = ©(nlogn)
(f) F(n)=F(n/3)+n

A=1,B=3,C=1 logg A=0<C, thus
F(n) = 6(n)

(h) F(n)=F(n—+/n)+n
F(n)— F(n—+/n) n

vn vn
F'(n) =n2
F(n)=n3

logn ~ logn

=
3

I

3\

)
(k) F(n)=F(3n/5)+ F(4n/5) + n*
a, =1, ﬂlzg’ a, =1, 62:%7 v =2

a1l + sy = (%)2 + (%)2 =1, and thus F(n) = ©(n"logn) = O(n’logn



(1) F(n)=F(n/2)+ F(n/3)+n

a; =1, 51:%7 a, =1, ﬂ2:%7 v=1
o7 4+ a2 = (3) + (3) = 2 <1, and thus F(n) = ©(n?) = O(n)

(m) F(n)= F(12n/13) F(5n/13) +n

a =1, = 13’ =1, 52 = 13, =1. a18] + a3 ( ) (%) > 1. Thus, we must
find § such that (13)6 + (—) =1. We find that § = 2, and thus F'(n) = (n‘;) = O(n?).

(n) F(n) =2F(n—1)+ 1 Think.

+
+

Substitute n = logm. Thus log & =logm —log2 =n — 1.
Let G(m) = F(n). Our new recurrence is G(m) = 2G(m/2) + 1, and thus, by the master theorem,
F(n) = G(m) =©(m) = ©(2").

5. The following is a partial array implementation of the ADT stack of integer. Fill in the missing code for

empty, push, and pop.

struct stak

{
int item[N];
int size;

};

void init(stak&S)
{
S.size = 0;

}

bool empty(stak S)
{
return S.size == 0;

}

void push(stak&S, int newitem)
{
assert(S.size < N);
S.item[S.size] = newitem;
S.sizet+;

3

int pop(stak&s)

{
assert(not empty(S));
S.size—-;
int rslt = S.item[S.size];

}



6. State the asysmptotic time complexity, in terms of n, of each of these code fragments. Use © notation.
(a) for(int i = 2; i < n; i=ixi)
cout << "Hello world." << endl;;
O(loglogn)

(b) for(int i = 2; i*i < n; i++)

cout << "Hello world." << endl;;

O(vn)
(¢) In the following problem, sqrt means square root.

for(int i = n; i > 2; i = sqrt{i})
cout << "Hello world." << endl;;

O(loglogn)
(d) for(int i = 1; i < n; i++)
for(int j = 1; j < n; j = 2%j)
cout << "Hello world." << endl;;

O(nlogn)
(e) for(int i = 1; i < m; i = 2%i)
for(int j = 0; j < i; j++)
cout << "Hello world." << endl;;

o(n)

7. Write pseudocode to solve the following dynamic programming problem. Given a row of coins, each of
which has a positive value, find the maximum value of a set of those coins, given that the set contains
no two coins which are adjacent in the row.

Let V[i] be the value of the i*® coin.
Afl] = V[1]
A[2] = max(A[1],V]2])
for i from 3 to n:

Ali] = max(A[i-1],V[i]+Al[i-2])
“The answer is A[n]”

In the second method, we compute Ali] be the maximum value of any legal set of coins which ends at
the i*" coin.

Afl] = V[1]

Al2] = V[2]

A[3] = V[3] + V[1]
for i from 4 to n:

Aln] = Vin] + max(A[i-2],Ali-3])
“The answer is max(A[n-1],A[n])”



8. Write pseudocode to solve the following dynamic programming problem. Given a row of coins, each of
which has a positive value, find the maximum value set of those coins, given that the set contains no
three coins which are adjacent in the row. For example, the set could contain coins 1,2,4,5. This problem

is more complex than Problem 7.

I will give two methods. In the first method, we compute A[i] to be the maximum value of any legal
subset of the first i coins, and let B[i] be the maximum value of any legal subset of the first i coins that

does not include the (i-1)%* coin.

B[] = V[1]
Afl] = B[]
B[2] = V[2]
AJ2] = V[2]+B][1]
for i from 3 ton

B[i] = V[i]+A[i-2]
i] = max(A[i-1],B[i],V[i]+B[i-1])
“The answer is A[n]”
In the second method, we compute Ali] be the maximum value of any legal set of coins which ends at
the i coin, and B[i] the maximum value of any legal set of coins which ends at the i*" coin and does

not include the (i-1)%* coin.

B[1] = V[1]
Afl] = B[1]
B[2] = V[2]
AJ2] = V[2]+A[1]
Af2] = V[2]+A[1]
for i from 3 to n

Bli] = V[i]+A[i-2]
Ali] = max(BJi],V[i]+B[i-1])
“The answer is max(A[n-1],A[n])”



The following C++ code contains an implementation of binary search tree. I have deleted most of the
code, leaving only what you need. Fill in the recursive code for the subprograms inorder, preorder and
postorder, as well as the functions hite and nmbr, which compute the height and number of nodes of the

binary search tree. I deleted code for level order. Below is the output of my program.
const int N = 20;

struct treenode;
typedef treenodextree;
struct treenode

{

int item;

tree left;

tree right;

};

tree mainroot;

void inorder(tree t)
{
if (t)
{
inorder (t->left);
cout << t->item << " ";
inorder (t->right);

3

void preorder(tree t)

{

if (¢)
{
cout << t->item << " ";
preorder (t->left);
preorder (t->right) ;
}



void postorder(tree t)
{
if (t)
{
postorder (t->left) ;
postorder (t->right);
cout << t->item << " ";

}

int hite(tree t) // height
// empty tree has hite -1
{
if (t)
return l+maxint(hite(t->left),hite(t->right));

else return -1;

int nmbr(tree t) // number of nodes

{
if (t)
return 1+numbr (t->left)+numbr(t->right);
else return O;

3

void insert(tree&t,int newitem)
{
if(t == 0)
{
t = new treenode();
t->item = newitem;
¥
else if (newitem < t->item) insert(t->left,newitem);
else insert(t->right,newitem);

}



void insertall(tree root); // the code is deleted

void writelevelorder(tree root); // the code is deleted

int main()

{

insertall (mainroot); cout << endl; // writes items in order of insertion
cout << "height = " << hite(mainroot();

cout << "number of nodes = " << nmbr(mainroot();

writeinorder (mainroot); cout << endl;
writepreorder(mainroot); cout << endl;
writepostorder (mainroot); cout << endl;
writelevelorder (mainroot); cout << endl;

return 1;

83 26 37 35 33 35 56 22 79 11 42 77 60 89 33 86 70 46 62 56
height = 8

number of nodes = 20

11 22 26 33 33 35 35 37 42 46 56 56 60 62 70 77 79 83 86 89
83 26 22 11 37 35 33 33 35 56 42 46 79 77 60 56 70 62 89 86
11 22 33 33 35 35 46 42 56 62 70 60 77 79 56 37 26 86 89 83
83 26 89 22 37 86 11 35 56 33 35 42 79 33 46 77 60 56 70 62

You must also turn in the code in a form that the TA can execute, such as:



4. If z is an array of length n, let z[i...j] be the set of all z[k] for ¢ < k < j. Thus z[i...j] = 0 if j < ¢, while

min(z[0...n — 1]) and max(z[0...n — 1]) are the minimum and maximum entries of x, respectively.

The following is C++ code for bub-
blesort. Write a loop invariant for

each of the two loops.

void sort(int x[n])
{
int m = n;
while(m > 0)
{
int i = 0;
while(i+1 < m)
{
if (x[i+1] < x[i])
swap (x[i+1],x[1]);

i = i+1;

The following is C++ code for selec-
tion sort. Write the loop invariant

for each of the two loops.

void sort(int x[n])
{
int i = 0;
while(i < n-1)
{
int j = i+1;
while(j < n)
{
if(x[3]1 < x[iD)
swap (x[1],x[j1);
j =3+

i= i+l

j >4 and min(z[k...n —1]) = z[k] for all k < i and z[k] > z[i] for all i < k < j

Outer Loop Invariant
0 m n-

=

< x{m

The loop invariant of the outer loop is
m > 0 and max(z[0...k]) = z[k] for all m <k <n

The loop invariant of the inner loop is

i < m and max(z[0...1]) = z[i]

Outer Loop Invariant

0 i n-1
sorted 2> x[i-1]
Inner Loop Invariant
0 i j n-1

sorted > X[i]

~

> x[i-1]

The loop invariant of the outer loop is
i>0and min(zfk...n—1]) = z[k] for all 0 < k < ¢

The loop invariant of the inner loop is



