A* Algorithm

The A* algorithm solves the single source minpath (least weight path) prob-
lem for a weighted directed graph. Let w(x,y) be the weight of the arc, from
T to .

In the example below, the edges are not directional, but we simply assume
that each edge represents two arcs, one in each direction.

A* is an “intelligent” version of Dijkstra’s algorithm, which finds the a minal
path from the source S to all vertices. A* is restricted to just one target
vertex, T'.

Heuristic

To work the algorithm, we must first obtain a value h(z), shown in red in
the figues, for each vertex x. For each x, h(z) must be a positive number
which is no greater than the least distance from x to T'. Letting h(z) = 0
for all z is a valid choice: in that case the rounds of A* duplicate the steps
of Dijkstra’s algorithm. The best choice is to let h(x) be the true distance
from x to T'. That choice is clearly not obtainable in practice, since if we
knew those values, we would already have a solution!

The heuristic should satisfy h(z) — h(y) > w(x,y) for all vertices = and y.
We say h is monotone or consistent.

Crow Flies

In an important practical case, where the distance from x to T follows a
system of roads, a good choicd of heuristic could be the geodesic distance.
Consistency is guaranteed in this case.

Steps of A*

As in Dijkstra’s algorithm, every vertex is either unprocessed, partially pro-
cessed (OPEN), or fully processed (CLOSED) at each round. Inially, S is
partially processed and all other vertices are unprocessed.

If x is partially processed, f(z), shown in black in the figures, is the least
cost of any path from S to = found so far. If z is fully processed, f(x) is the



least cost of any path from S to z.

For fully and partially processed vertices, g(x) = f(z)+h(z), shown in green
in the figures.

At each round of the A* algorithm, the following steps are executed.

1. The partially processed vertex x which has the smallest value of g(x)
is chosen.

2. For each out-neighbor y of x which is unprocessed, let f(y) = f(z) +
w(x,y) y becomes partially processed. the back pointer back(z) =y
shown as a dashed magenta arrow in the figures, is defined.

3. For each out-neighbor z of x which is partially processed. compute
temp = f(z2) + w(z,2). If temp < f(z), redefine f(x) = temp and
redefine back(z) = z.

4. x is now fully processed.

5. If x = T, the algorithm halts. The least cost path, of weight T, may
be found by following back pointers starting at 7.

Example Calculation

We execute A* on a weighted graph. Initially, S is the sole open vertices.




Figure B: S becomes fully processed (closed), and its neighbors inserted in
the minqueue, whose items are shown in incresing order of g.




Open: B,G,AF
Closed: S

Figure C: B is fully processed, and its neighbors C' and I are partially
processed.

Open: C,I,G,AF
Closed: S,B



Open: C,I,G,AF
Closed: S,B

Figure D: C is fully processed, and its neighbors G and D are partially
processed.

Open: I,G,D,AF
Closed: SB,C



Open: I,G,D,A,F
Closed: SB,C

Figure E: I is fully processed, and its neighbors B and I are partially pro-
cessed. D remains partially processed, but has a new backpointer, hence
f(D) and g(D) decrease.

Open: G,D,A,F,JH
Closed: SB,C,I



Open: G,D,A,F,JH
Closed: SB,C,I

Figure F: g(G) = ¢g(D), hence they can be fully processed simultaneously.
L, K, E, and N are partially processed, while f(H) and g(H) decrease. H
jumps to the top of the minqueue.

Open: HA,JFN,L K,E
Closed: S,B,C,I,D,G



Open: HA,JFN,L K,E
Closed: S,B,C,I,D,G

Figure G: H is processed. O and P are partially processed. while f(J),
g(J) decrease, causing J to jump to the top of the minqueue.

Open: JA,F,N,L,O,K,P,E Q13
Closed: S,B,C,1,D,G,H



Open: JA,F,N,L,O,K,P.E Q13
Closed: SB,C,I,D,G,H

Figure H: J is fully processed. The figure does not change.

Open: K,A,F,N,L,O,P,E
Closed: SB,C,I,D,G,H,J



Open: K,A,F,N,L,O,P,E
Closed: SB,C,I,D,G,H,J

Figure I: K is fully processed. R is partially processed.

Open: A,F,N,L,O,P,RE
Closed: SB,C,I,D,G,H,JK

10



Open: A,F,N,L,O,P,R,E
Closed: S,B,C,I,D,G,H,JK

Figure J: A is fully processed. No new vertices are visited. The figure does
not change.

Open: F,N,L,O,P,RE
Closed: SB,C,I,D,G,H,JK,A

11



Open: F,N,L,O,P,RE
Closed: SB,C,I,D,G,H,JK,A

Figure K: F' and N are processed simultaneously, since g(F') = g(N). No
new vertices are visited. The figure does not change.

Open: L,O,P,R,E
Closed: SB,C,I,D,G,H,JK,AF,N

12



Open: L,O,PR,E
Closed: S,B,C,1,D,G,H,JK,A,FN

Figure L: M is partially processed.

Open: P,REM
Closed: SB,C,1,D,G,H,JK,AF,N

13



Open: P,REM
Closed: SB,C,1,D,G,H,JK,AF,N

Figure M: P and R are processed, while () and T" are partially processed.

Closed: S,B,C,I,D,G,H,JK,A,F,N,P,R

14



Closed: S,B,C,I,D,G,H,JK,A,F,N,P,R

Figure N: T is fully processed, which terminates the A* algorithm. The
figure does not change. The shortest path from S to T is indicated.

Closed: S,B,C,1,D,G,H,JK,A,F,N,P,R

15



